
Efficient floating point precision
tuning for approximate

computing

Nhut-Minh Ho 1, Elavarasi Manogaran 1, Weng-Fai Wong 1 and
Asha Anoosheh 2

1 National Univ. of Singapore, Singapore
2 Univ. of California, Berkeley, U.S.A.

Energy concern in computing

2

Top 500 supercomputers cost ≈$400
million/year for energy consumption:

Green computing:
"FLOPS-per-Watt"

Reduce application
energy consumption

http://www.green500.org/

Other devices

Estimated U.S. data center electricity consumption by market segment http://www.nrdc.org/

www.newtonbaba.com & google image

Error tolerant applications

• Big data analytics
• Media data processing/classification
• Simulations
• Non-critical functions in each program
• …

3

Approximate Computing

Approximate computing

• Sacrifice accuracy for performance => also increase energy
efficiency

• Various approaches:
• Hardware:

• Low-power circuit with uncertainty
• Fine-grain floating-point bitwidth hardware

• Software:
• Task skipping: loop perforation
• Floating point precision tuning

4

Floating point numbers

• Appear almost in every computer program

Expected : a = 1000.0 Actual : a ≈ 1000.220703

Error ≈ 1000.220703−1000
1000

≈ 2.2 × 10−4
5

Precision tuning, previous work

• Arbitrary-precision fixed point tuning for DSP programs
• Many techniques: search-based, error analysis based.
• None of them can scale to real-world floating-point programs nowadays.

• 2-type floating point precision tuning
• Search for variables can be converted: double → float.
• Can analyze real-world applications.
• Recent works: Floatwatch 2007, Precimonious 2013, Enhanced Precimonious

2016.
• Cannot work on finer grained precision in different architecture without

modification.

6

2-type floating point is enough ?

• Modern CPU architecture: sufficient.
• FPGA (Field-programmable gate array) prototype showed advantages

of using finer grain floating point unit.
• Nvidia’s GPU (graphics processing unit) newest architecture supports

half-precision.

7http://www.nvidia.com/

Motivation

Our goal:
• Fast
• Scale well
• Fine-grained precision support
• The result can be used on HLS process, as well as migrated to GPU

8

Current techniques for x86 applications:
• Moderately fast
• Limited precision support (float & double)

Current techniques for FPGA community:
• Slow when processing complex applications
• Fine-grained precision (any number of bits)
• HLS paves the way for big and complex

applications on FPGA

Overview

User specified
accuracy

constraints

Arbitrary-
precision
searching

Result
refinement
(optional)

Final
precision

requirement

Tuned
program(s)

Multiple-
precision
program

Input Searching Output

9

High-level
Synthesis

MPFR transformation

Original code Rewritten code

Precision assigned at runtime

10

Use Multiple Precision Floating-Point Reliable (MPFR) library to create the
Multiple-precision program for searching

Arbitrary-precision tuning

11

User specified
accuracy

constraints

Arbitrary-
precision
searching

Multiple-
precision
program

Input Searching

4 4 4 4 4

53 53 53 53 53

23

35

19
15

38

x1 x2 x3 x4 x5

Pr
ec

isi
on

Variable

Lower Bound Upper Bound Solution

Region 1: 𝐸𝐸𝐸𝐸𝐸𝐸 ≤ ϵ

Region 2: 𝐸𝐸𝐸𝐸𝐸𝐸 > ϵ

12

function(){
mpfr_t x1;
mpfr_t x2 = …. ;
….
mpfr_t x5 = ….;

}

• User defined accuracy
constraint ϵ

• Err : error of the output

Arbitrary-precision tuning

One slice of the search space

Step 1: Isolated downward
Find the minimum possible
precision for each variable
while keeping others at
highest precision.

Binary search + parallelism at
variable level.
Run-time ≤ log2 53 − 4

13

Step1 result usually causes 𝐸𝐸𝐸𝐸𝐸𝐸 > ϵ

53 53 53 53 53

23

35

19
15

38

18

53 53 53 53

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Solution Step1 Lower Bound

53 53 53 53 53

23

35

19
15

38

53

30

53 53 53

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Solution Step1 Lower Bound

53 53 53 53 53

23

35

19
15

38

53 53 53

13

53

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Solution Step1 Lower Bound

53 53 53 53 53

23

35

19
15

38

18

30

19

13

33

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Solution Step1 Lower Bound

Step 2: Grouped upward

53 53 53 53 53

23

35

19
15

38

18

30

19

13

33

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Solution Step1 Lower Bound

From Step1 result, try to get back
to the solution

Strategy: Get back to the point
where 𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 𝜖𝜖 as fast as
possible.

14

Step 2: Grouped upward
53 53 53 53 53

23

35

19
15

38

18

30

19

13

33

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Solution Step1 Lower Bound

Strategy: Get back to the point
where 𝐸𝐸𝐸𝐸𝐸𝐸 ≤ ϵ as fast as
possible.

15

Greedily shift the blue line
upward:
• 1 variable at a time: good

but stuck when no variables
can reduce Err

↑ 1 bit
Err ↓

↑ 1 bit
Err ↓

↑ 1 bit
Err ↓

↑ 1 bit
Err ↓

The effect may not propagate to
the output => no change in Err

↑ 1 bit
Err ↓

Step 2: Grouped upward (cont)

• Our approach: “grey-box” distributed search

x1

x3 = x1 + x2
x5 = x3 * x4

x2

x3 x4

x5

When increasing precision of a variable,
should increase all other variables in the
path from it to the output.

16

Increase precision of the whole dependence
group, not single variable.
{x1,x3,x5}, {x2,x3,x5}, {x3,x5}

Dataflow graph

output

Step 2: Grouped upward

Step 2 gives an acceptable result
higher than the solution.

17

• Shift Step1 result upward by
competition between groups of
variables.

• Group reduces most error will
win 1 bit for all members.

• Parallelize at group level (5
groups)

53 53 53 53 53

23

35

19
15

38

18

30

19

13

33

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Solution Step1 Lower Bound

↑ 1 bit
Err ↓

↑ 1 bit
Err ↓

53 53 53 53 53

26

38

21
17

39

23

35

19
15

38

18

30

19

13

33

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Step2 Solution Step1 Lower Bound

The iterative process

• Reuse step 1 to find another
result closer to the solution.

• Then reuse step 2 to move
upward to the solution.

• The algorithm converges
after a few epochs.

53 53 53 53 53

23

35

19
15

38

4 4 4 4 4

x1 x2 x3 x4 x5

Upper Bound Step2 Step2 Solution
Step1 Step1 Lower Bound

18

Result

• Quality: ≈6% fewer in number of bits compared to an established
algorithm Max-1(for small programs).

• Complexity:
• Tmpfr = time to run the input program (multiple-precision version):
• Average: 25.9 x Tmpfr , for programs have 10-45 variables
• Large program (417 variables): 110.5 x Tmpfr

19

Compare to state-of-the-art

• Precimonious searches for the mixed use of 2 types : float and
double.

• The fine-grain results are mapped to 2 types for comparison.

20

Number of double variables required for 𝜖𝜖 = 10−6

45

32 31
34

17

42

13 13
11

0

13

3 4
6

0
0

5

10

15

20

25

30

35

40

45

50

ep cg polyroots sum blas

N
um

be
r o

f d
ou

bl
e

va
ria

bl
es

Original program PrecB 10⁻⁶ Ours 10⁻⁶ 21

PrecB: tuned by Precimonious
2016 [7].

Ours: tuned by our tool
chain

Speedup (%) compared to the original version

9.2

0

41.5

3.4

15.4

4.8

49.5

3.4

0

10

20

30

40

50

60

cg polyroots sum blas

Sp
ee

du
p

(%
)

PrecB 10⁻⁴ Ours 10⁻⁴

𝜖𝜖 = 10−4 22

Aggregated result across 11 programs

0

50

100

150

200

250

300

350

400

4 8 12 16 20 24 28 32 36 40 44 48 52

N
U

M
BE

R
O

F
VA

RI
AB

LE
S

PRECISION

ε = 10⁻⁴ ε = 10⁻⁶

ε = 10⁻⁸ ε = 10⁻¹⁰

2,666 floating-point
variables across 4 error
thresholds (ε)

% variable can be in half-
precision (11 bits) :
• ≈66% for 10-4

• ≈52% for 10-6

• ≈38% for 10-8

• ≈31% for 10-10

Majority

23

New floating
point type ?

Result refinement

24

User specified
accuracy

constraints

Arbitrary-
precision
searching

Result
refinement
(optional)

Multiple-
precision
program

Input Searching

Input variation problem

25

Input = 1.2, 𝜖𝜖 = 10−5
function(float_32 input){

float_32 output = input * input;
}

function(float_16 input){
float_25 output = input * input;

}

Input = 1000.0, Err = ?
Input = 0.01, Err = ?

Statistically guided refinement
for input ∈ [0.01;1000]

Training set of M seeds for
random number generator

in range [0.01;1000]

Input = 1.2, Err ≤ 10−5

Statistically guided refinement

26

function(float_32 input){
float_32 output = input * input;

}

function(float_20 input){
float_18 output = input * input;

}

worst_seed = 1, 𝝐𝝐 = 𝟏𝟏𝟏𝟏−𝟓𝟓

Average Err = 5.0 × 10−3
worst_seed = 43 causes Err = 10−2

Average Err over 100 seeds = ?
worst_seed = ?

1 seed number = 1 representative input
Training set of 100 seeds

function(float_16 input){
float_22 output = input * input;

}

function(float_20 input){
float_22 output = input * input;

}

worst_seed = 43, 𝝐𝝐 = 𝟏𝟏𝟏𝟏−𝟓𝟓

Average Err over 100 seeds = ?
worst_seed = ?

Result on DSP programs, target 𝜖𝜖 = 10−5

Before, average = 2.3 × 10−4, max = 3.4 × 10−2 After, average = 4.9 × 10−6, max =2.5 × 10−4
27

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁷

N
um

be
r o

f i
np

ut
s

(o
ut

 o
f 1

00
k

in
pu

ts
)

Error (log scale)

After

Before

Arbitrary precision version on Vivado HLS

28

Accuracy constraint: 50-60dB

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

Execution Time FFs LUTs DSPs

N
or

m
al

ize
d

va
lu

e
(t

im
es

 A
P

ve
rs

io
n)

Average resource consumption & execution time (normalized) of 6
programs with different precision assigned on Vivado HLS

Single Precision Double Precision Arbitrary Precision (tuned by our tool)

Conclusion

• Our algorithm can scale to large and long running programs:
• E.g. Tmpfr = 20 mins, number of variables = number of MPI threads ≤ 45

=> Expected searching = 26 x 20 ≈ 520 mins.

• We use program’s high-level dependence information to guide the
distributed search process.

• Input variation problem can be mitigated with our statistics guided
refinement process.

• This tool paves the way for using HLS with arbitrary precision on large
programs.

29

Thanks for listening

Q&A

Link to github repository

https://github.com/minhhn2910/fpPrecisionTuning

31

https://github.com/minhhn2910/fpPrecisionTuning

	Efficient floating point precision tuning for approximate computing
	Energy concern in computing
	Error tolerant applications
	Approximate computing	
	Floating point numbers
	Precision tuning, previous work
	2-type floating point is enough ?
	Motivation
	Overview
	MPFR transformation
	Arbitrary-precision tuning
	Arbitrary-precision tuning
	Step 1: Isolated downward
	Step 2: Grouped upward
	Step 2: Grouped upward
	Step 2: Grouped upward (cont)
	Step 2: Grouped upward
	The iterative process
	Result
	Compare to state-of-the-art
	Number of double variables required for 𝜖= 10 −6
	Speedup (%) compared to the original version
	Aggregated result across 11 programs
	Result refinement
	Input variation problem
	Statistically guided refinement
	Result on DSP programs, target 𝜖= 10 −5
	Arbitrary precision version on Vivado HLS
	Conclusion
	Thanks for listening
	Link to github repository

