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Energy concern in computing

2

Top 500 supercomputers cost ≈$400 
million/year for energy consumption: 

Green computing:
"FLOPS-per-Watt"

Reduce application 
energy consumption

http://www.green500.org/

Other devices

Estimated U.S. data center electricity consumption by market segment http://www.nrdc.org/

www.newtonbaba.com & google image



Error tolerant applications

• Big data analytics
• Media data processing/classification
• Simulations
• Non-critical functions in each program
• … 
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Approximate Computing 



Approximate computing

• Sacrifice accuracy for performance => also increase energy 
efficiency

• Various approaches:
• Hardware:

• Low-power circuit with uncertainty
• Fine-grain floating-point bitwidth hardware

• Software:
• Task skipping: loop perforation
• Floating point precision tuning
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Floating point numbers

• Appear almost in every computer program

Expected : a = 1000.0 Actual : a ≈ 1000.220703

Error ≈ 1000.220703−1000
1000

≈ 2.2 × 10−4
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Precision tuning, previous work

• Arbitrary-precision fixed point tuning for DSP programs 
• Many techniques: search-based, error analysis based.
• None of them can scale to real-world floating-point programs nowadays.

• 2-type floating point precision tuning
• Search for variables can be converted: double → float.
• Can analyze real-world applications.
• Recent works: Floatwatch 2007, Precimonious 2013, Enhanced Precimonious

2016.
• Cannot work on finer grained precision in different architecture without 

modification.
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2-type floating point is enough ?

• Modern CPU architecture: sufficient.
• FPGA (Field-programmable gate array) prototype showed advantages 

of using finer grain floating point unit.
• Nvidia’s GPU (graphics processing unit) newest architecture supports 

half-precision.

7http://www.nvidia.com/



Motivation

Our goal:
• Fast
• Scale well
• Fine-grained precision support
• The result can be used on HLS process, as well as migrated to GPU
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Current techniques for x86 applications:
• Moderately fast 
• Limited precision support (float & double)

Current techniques for FPGA community:
• Slow when processing complex applications
• Fine-grained precision (any number of bits)
• HLS paves the way for big and complex 

applications on FPGA



Overview

User specified 
accuracy 
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Arbitrary-
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Multiple-
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program

Input Searching Output
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High-level 
Synthesis



MPFR transformation

Original code Rewritten code

Precision assigned at runtime
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Use Multiple Precision Floating-Point Reliable (MPFR) library to create the 
Multiple-precision program for searching



Arbitrary-precision tuning
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Input Searching
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function(){
mpfr_t x1;
mpfr_t x2 = …. ;
….
mpfr_t x5 = ….;

}

• User defined accuracy 
constraint ϵ

• Err : error of the output

Arbitrary-precision tuning

One slice of the search space



Step 1: Isolated downward
Find the minimum possible 
precision for each variable 
while keeping others at 
highest precision.

Binary search + parallelism at 
variable level.
Run-time ≤ log2 53 − 4
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Step1 result usually causes 𝐸𝐸𝐸𝐸𝐸𝐸 > ϵ
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Step 2: Grouped upward
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From Step1 result, try to get back 
to the solution 

Strategy: Get back to the point 
where 𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 𝜖𝜖 as fast as 
possible.
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Step 2: Grouped upward
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possible.
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Greedily shift the blue line 
upward:
• 1 variable at a time: good 

but stuck when no variables 
can reduce Err

↑ 1 bit
Err ↓

↑ 1 bit
Err ↓

↑ 1 bit
Err ↓

↑ 1 bit
Err ↓

The effect may not propagate to 
the output => no change in Err

↑ 1 bit
Err ↓



Step 2: Grouped upward (cont)

• Our approach: “grey-box”  distributed search

x1

x3 = x1 + x2
x5 = x3 * x4

x2

x3 x4

x5

When increasing precision of a variable, 
should increase all other variables in the 
path from it to the output.
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Increase precision of the whole dependence 
group, not single variable.
{x1,x3,x5}, {x2,x3,x5}, {x3,x5}

Dataflow graph

output



Step 2: Grouped upward

Step 2 gives an acceptable result 
higher than the solution.
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• Shift Step1 result upward by 
competition between groups of 
variables.

• Group reduces most error will 
win 1 bit for all members.

• Parallelize at group level (5 
groups)
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The iterative process

• Reuse step 1 to find another 
result closer to the solution.

• Then reuse step 2 to move 
upward to the solution.

• The algorithm converges 
after a few epochs.
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Result 

• Quality:  ≈6% fewer in number of bits compared to an established 
algorithm Max-1(for small programs).

• Complexity: 
• Tmpfr = time to run the input program (multiple-precision version):
• Average: 25.9 x Tmpfr , for programs have 10-45 variables
• Large program (417 variables):  110.5 x Tmpfr

19



Compare to state-of-the-art

• Precimonious searches for the mixed use of  2 types : float and 
double.

• The fine-grain results are mapped to 2 types for comparison.
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Number of double variables required for 𝜖𝜖 = 10−6
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Original program PrecB 10⁻⁶ Ours 10⁻⁶ 21

PrecB: tuned by Precimonious
2016 [7].

Ours: tuned by our tool 
chain



Speedup (%) compared to the original version
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Aggregated result across 11 programs 
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2,666 floating-point 
variables across 4 error 
thresholds (ε)

% variable can be in half-
precision (11 bits) :
• ≈66% for 10-4

• ≈52% for 10-6

• ≈38% for 10-8

• ≈31% for 10-10

Majority
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New floating 
point type ?



Result refinement
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accuracy 
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Input Searching



Input variation problem
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Input = 1.2, 𝜖𝜖 = 10−5
function(float_32 input){

float_32 output = input * input;
}

function(float_16 input){
float_25 output = input * input;

}

Input = 1000.0, Err = ?
Input = 0.01, Err = ?

Statistically guided refinement 
for input ∈ [0.01;1000]

Training set of M seeds for 
random number generator 

in range [0.01;1000]

Input = 1.2, Err ≤ 10−5



Statistically guided refinement
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function(float_32 input){
float_32 output = input * input;

}

function(float_20 input){
float_18 output = input * input;

}

worst_seed = 1, 𝝐𝝐 = 𝟏𝟏𝟏𝟏−𝟓𝟓

Average Err = 5.0 × 10−3
worst_seed = 43 causes Err = 10−2

Average Err over 100 seeds = ?
worst_seed = ?

1 seed number = 1 representative input
Training set of 100 seeds

function(float_16 input){
float_22 output = input * input;

}

function(float_20 input){
float_22 output = input * input;

}

worst_seed = 43, 𝝐𝝐 = 𝟏𝟏𝟏𝟏−𝟓𝟓

Average Err over 100 seeds = ?
worst_seed = ?



Result on DSP programs, target 𝜖𝜖 = 10−5

Before, average = 2.3 × 10−4, max = 3.4 × 10−2 After, average = 4.9 × 10−6, max =2.5 × 10−4
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Arbitrary precision version on Vivado HLS
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Accuracy constraint: 50-60dB
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Conclusion

• Our algorithm can scale to large and long running programs:
• E.g. Tmpfr = 20 mins, number of variables = number of MPI threads ≤ 45          

=> Expected searching = 26 x 20 ≈ 520 mins.

• We use program’s high-level dependence information to guide the 
distributed search process.

• Input variation problem can be mitigated with our statistics guided 
refinement process.

• This tool paves the way for using HLS with arbitrary precision on large 
programs.
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Thanks for listening

Q&A



Link to github repository

https://github.com/minhhn2910/fpPrecisionTuning
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https://github.com/minhhn2910/fpPrecisionTuning
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