Lithography Hotspot Detection by Two-stage Cascade Classifier using Histogram of Oriented Light Propagation

Yoichi Tomioka

University of Aizu Aizu-Wakamatsu, Fukushima, Japan Tetsuaki Matsunawa Chikaaki Kodama Shigeki Nojima Toshiba Corporation Yokohama, Kanagawa, Japan

Backgrounds

Ongoing shrinkage in the size of semiconductor devices degenerates the fidelity of the layout pattern on a wafer

It is essential to detect and repair **lithography hotspots** having high possibility of defects

Existing Methods for Hotspot Detection

- Lithography simulation
 Accurate but time consuming
- 2. Pattern matching (J. Xu et al., ICCAD2007) (Y.-T. Yu et al., DAC2012) Cannot detect unknown hotspots that are not stored in the library
- Machine learning (S.-Y. Lin et al., DAC2013) (T. Matsunawa et al., SPIE2015) (Y.-T. Yu et al., TCAD2015)
 Train a classifier with hotspot and non-hotspot samples
 Can detect unknown hotspots in reasonable time
 Has not achieved sufficient accuracy

Goal & Contributions

Our goal:

To realize accurate and fast machine-learning-based hotspot detection

Contributions:

- Novel layout feature named as HOLP
- Two-stage cascade classifier using combination of HOLP and density-based layout feature
- Improvement of detection accuracy compared to existing methods

 (I1) #(correctly detected hotspots) #(actual hotspots)
 (I2) #(correctly detected hotspots) #(false hotspots)
 : 1.15% improvement
 : 24.4 times improvement

Classifier Construction for Hotspot Detection

Existing Layout Feature Density-based layout feature (DBLF)

(J.-Y. Wuu, et al., ASPDAC2011)

Calculate the density of the layout pattern in each subregion

0.316	0.316	0.274	0	0	0	0	0	0	0	
0.414	0.45	0.441	0.383	0.383	0.277	0	0	0	0	
0.758	0.758	0.758	0.758	0.758	0.758	0.758	0.758	0.758	0.758	
0.25	0.25	0.25	0.545	0.575	0.575	0.575	0.575	0.575	0.575	
0	0	0	0.505	0.484	0.441	0.441	0.441	0.441	0.441	
0.458	0.448	0.075	0.548	0.336	0.383	0.39	0.075	0.008	0.373	
0.633	0.633	0.633	0.578	0.225	0.515	0.605	0.633	0.36	0.431	
0.058	0.064	0.441	0.441	0.396	0.432	0.441	0.441	0.441	0.24	
0.024	0.391	0.391	0.391	0.391	0.391	0.391	0.391	0.088	0.008	
1	1	1	1	1	1	1	1	1	1	

Cannot distinguish different patterns of the same density

Geometry-related and lithographyprocess-related features (Y.-T. Yu et al., TCAD2015)

1. Classify layout patterns according to their topologies

2. Construct a classifier for each topology class

Geometry-related features such as

- pattern width
- space width

Lithography-process-related features such as

- # of corners
- DBLF

Detection accuracy is not sufficient More suitable features are required for hotspot detection

Feature of Our Proposed Classifier

Defects depend on light passing through a photomask Both the amount and direction of the light are important

DBLF represents the amount of light passing through a photomask

We propose a novel layout feature representing the direction of light propagation

2017/1/17 ASP-DAC 2017

Histogram of Oriented Light Propagation (HOLP)

$\frac{1}{256}$	$\frac{4}{256}$	$\frac{6}{256}$	$\frac{4}{256}$	$\frac{1}{256}$
$\frac{4}{256}$	$\frac{16}{256}$	$\frac{24}{256}$	$\frac{16}{256}$	$\frac{4}{256}$
$\frac{16}{256}$	$\frac{24}{256}$	$\frac{36}{256}$	$\frac{24}{256}$	$\frac{16}{256}$
$\frac{4}{256}$	$\frac{16}{256}$	$\frac{24}{256}$	$\frac{16}{256}$	$\frac{4}{256}$
$\frac{1}{256}$ $\frac{4}{256}$		$\frac{6}{256}$	$\frac{4}{256}$	$\frac{1}{256}$

1. Gaussian blur

3. Calculation of HOG-like feature

Calculation of HOG-like feature

The histogram of each block is calculated by voting m(x, y) to the bin corresponding to $\theta(x, y)$ for all pixels of the block

Two-stage Cascade Classifier for Hotspot Detection

Training of Two-stage Classifier

We employed Real-AdaBoost-based classifier

Weak classifiers are decision trees

- Depth: 1--3
- #classifiers : 10--200

Extraction of NHS similar to HS

Training data

window

Transformation of Training Data

Experiments

Implementation: the C++ language and CUDA.

Platform:

- a CORE i7-4771 3.5 GHz processor,
- 32 GB memory,
- NVIDIA GeForce GTX 780 (for HOLP and DBLF extraction)

Resolution: $4x4 \text{ nm}^2 = 1 \text{ pixel}$

The area to calculate HOLP: 640x640 nm² (10 x 10 blocks) The area to calculate DBLF: 1280x1280 nm² (10 x 10 blocks)

ICCAD-2012 CAD contest dataset

	Training layout d		Test layo				
data	Name	#hs	#nhs	Name	#hs	area (µm²)	process
data1	MX_benchmark1_clip	99	340	array_benchmark1	226	12,516	32nm
data2	MX_benchmark2_clip	174	5,285	array_benchmark2	499	106,954	28nm
data3	MX_benchmark3_clip	909	4,643	array_benchmark3	1,847	122,565	28nm
data4	MX_benchmark4_clip	95	4,452	array_benchmark4	192	82,010	28nm
data5	MX_benchmark5_clip	26	2,716	array_benchmark5	42	49,583	28nm

Detection Accuracy

Actual hotspot

The objective is to maximize the following two indices:

(I1) accuracy = $\frac{\#hits}{\#(actual hotspots)}$ (I2) $\frac{\#hits}{\#artras}$

Comparison of Detection Performance

Comparison of Runtime

Runtime [sec.]

Conclusions

- We proposed a cascade classifier that uses HOLP and densitybased layout features for hotspot detection and realized fast and more accurate hotspot detection.
- In future work, we will try to further reduce the execution time by selectively applying the proposed cascade classifier only to hotspot candidates detected by a rough and fast detector

Thank you for your attention!

Accuracy Improvement by HOLP

Two-stage classifier using HOLP and DBLF (Proposed method)

Effects of Gaussian Blur

Accuracy

More robust to small shift of input layout pattern

Parameters of Our Experiments

Value	Description
128 nm	Amount of a shift in scanning
	layout data
640 nm	Side length of a region for
	HOLP calculation
160	Side length of a pixel is 4 nm
10	Number of blocks in a side for
	HOLP calculation
3.3 nm	Standard deviation of Gaussian
	filter
8	Number of bins of histogram in
	a block
1280 nm	Side length of a region for
	DBLF
10	Number of blocks in side for
	DBLF calculation