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Backgrounds
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Ongoing shrinkage in the size of semiconductor devices degenerates 
the fidelity of the layout pattern on a wafer

It is essential to detect and repair lithography hotspots having high 
possibility of defects

lens

wafer

photomask
Dose and focus variations 

defects such as electrical 
short and open
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Pattern on a wafer



Existing Methods for Hotspot Detection
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1. Lithography simulation
Accurate but time consuming

2. Pattern matching (J. Xu et al., ICCAD2007) (Y.-T. Yu et al., DAC2012)

Cannot detect unknown hotspots that are not stored in 
the library

3. Machine learning (S.-Y. Lin et al., DAC2013) (T. Matsunawa et al., 
SPIE2015) (Y.-T. Yu et al., TCAD2015)
Train a classifier with hotspot and non-hotspot samples
Can detect unknown hotspots in reasonable time
Has not achieved sufficient accuracy



Goal & Contributions
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• Novel layout feature named as HOLP
• Two-stage cascade classifier using combination of HOLP 

and density-based layout feature
• Improvement of detection accuracy compared to 

existing methods

Our goal:
To realize accurate and fast machine-learning-based 

hotspot detection

(I1) # correctly detected hotspots
#(actual hotspots)

: 1.15% improvement

(I2) # correctly detected hotspots
#(false hotspots)

∶ 24.4 times improvemnet

Contributions:



Classifier Construction for Hotspot Detection 
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Training data
Hotspot patterns Non-hotspot patterns

Feature extraction

Machine learning
(e.g. SVM, Real AdaBoost)

Classifier
Feature space

Hotspot sample

Non-hotspot sample



Existing Layout Feature
Density-based layout feature (DBLF)
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(J.-Y. Wuu, et al., ASPDAC2011)

Calculate the density of the layout pattern in each subregion

Cannot distinguish
different patterns of the same density



Geometry-related and lithography-
process-related features
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(Y.-T. Yu et al., TCAD2015)

１．Classify layout patterns according to their topologies
２．Construct a classifier for each topology class

Geometry-related features such as
• pattern width
• space width

Lithography-process-related features such as 
• # of corners
• DBLF

Detection accuracy is not sufficient
More suitable features are required for hotspot detection 



Feature of Our Proposed Classifier
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lens

wafer

photomask

light

Defects depend on light passing through a photomask
Both the amount and direction of the light are important

DBLF represents the amount of light 
passing through a photomask 

0.5 0.5 0.5

We propose a novel layout feature 
representing the direction of light 
propagation



Histogram of Oriented Light Propagation (HOLP)
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1. Gaussian blur
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2. Division into 10x10 blocks3. Calculation of HOG-like feature

1 pixel : 4x4 nm2



Calculation of HOG-like feature
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The histogram of each block is calculated by voting 𝑚𝑚(𝑥𝑥,𝑦𝑦) to 
the bin corresponding to 𝜃𝜃(𝑥𝑥,𝑦𝑦) for all pixels of the block

Intensity 𝐼𝐼(𝑥𝑥,𝑦𝑦)

𝑓𝑓ℎ 𝑥𝑥,𝑦𝑦 = 𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 − 𝐼𝐼 𝑥𝑥 − 1,𝑦𝑦

𝑓𝑓𝑣𝑣(𝑥𝑥, 𝑦𝑦) = 𝐼𝐼 𝑥𝑥,𝑦𝑦 + 1 − 𝐼𝐼 𝑥𝑥,𝑦𝑦 − 1



Two-stage Cascade Classifier for Hotspot 
Detection
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HS candidate

HS

Classifier 1
HS candidate detector

NHS

Classifier 2
False HS reduction

NHS

Input data

(including NHS similar to HS)

Feature extraction
HOLP+DBLF



Training of Two-stage Classifier
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Training data

Train

HS NHS

Classifier 1
HS candidate detector 

Training data

Train

HS NHS similar to HS 

Classifier 2
False HS reduction

We employed Real-AdaBoost-based classifier
Weak classifiers are decision trees
• Depth: 1--3
• #classifiers：10--200



Extraction of NHS similar to HS
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False 
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scan
window

NHS similar to HS

Training data



Transformation of Training Data
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Experiments
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Implementation: the C++ language and CUDA. 

Platform:
• a CORE i7-4771 3.5 GHz processor,
• 32 GB memory, 
• NVIDIA GeForce GTX 780 (for HOLP and DBLF extraction)

Resolution: 4x4 nm2 = 1 pixel

The area to calculate HOLP: 640x640 nm2 (10 x 10 blocks)
The area to calculate DBLF: 1280x1280 nm2 (10 x 10 blocks)



ICCAD-2012 CAD contest dataset
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data
Training layout data Test layout data

process
Name #hs #nhs Name #hs area (μm2)

data1 MX_benchmark1_clip 99 340array_benchmark1 226 12,516 32nm

data2 MX_benchmark2_clip 174 5,285array_benchmark2 499 106,954 28nm

data3 MX_benchmark3_clip 909 4,643array_benchmark3 1,847 122,565 28nm

data4 MX_benchmark4_clip 95 4,452array_benchmark4 192 82,010 28nm

data5 MX_benchmark5_clip 26 2,716array_benchmark5 42 49,583 28nm



Detection Accuracy
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hit

extra

Actual hotspot
hit:

if a region sufficiently close to an actual hotspot 
area
extra (false alarm): 

otherwise

(I1) accuracy = #ℎ𝑏𝑏𝑖𝑖𝑖𝑖
#(𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖)

ASP-DAC 2017

(I2) #ℎ𝑏𝑏𝑖𝑖𝑖𝑖
#𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑖𝑖

The objective is to maximize the following two indices:



Comparison of Detection Performance
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Comparison of Runtime
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Comparable

3.5 GHz processor,
32 GB memory, 
NVIDIA GeForce GTX 780 

2.66 GHz quad-core CPU,
8 GB memory

two 2.3 GHz CPUs,
64 GB memory



Conclusions
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• We proposed a cascade classifier that uses HOLP and density-
based layout features for hotspot detection and realized fast 
and more accurate hotspot detection. 

• In future work, we will try to further reduce the execution time 
by selectively applying the proposed cascade classifier only to 
hotspot candidates detected by a rough and fast detector



Thank you for your attention!
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Accuracy Improvement by HOLP
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Two-stage classifier using HOLP 
and DBLF (Proposed method)Two-stage classifier using DBLF 

Accuracy
99.0%
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Effects of Gaussian Blur 
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More robust to small shift of input 
layout pattern



Parameters of Our Experiments
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