

Reliability Analysis of Memories suffering MBUs for the Effect of Negative Bias Temperature Instability

ASP-DAC 2017

Shanshan Liu, Liyi Xiao, Xuebing Cao and Zhigang Mao Microelectronic Center, Harbin Institute of Technology

by January 17, 2017

OUTLINE

Background

- NBTI
- The proposed reliability model for memories
 - Geant4 simulation
 - > MTTF modeling
- Simulation results
- Conclusion

Radiation Environment

How does an SEU occur?

Long Term Service

Negative Bias Temperature Instability (NBTI)

- NBTI is one of the predominant aging effects.
- NBTI changes PMOS parameters over time due to oxide trapped charge and interface state generation.
- The absolute threshold voltage of PMOS can increase by more than 50mV over ten years. MAgarwal,08

Error Correction Codes (ECCs)

- ECCs are commonly used to protect memories against MBUs.
- ECCs can be used by combining with scrubbing technique in case of high transient error rate.

Mean Time to Failure (MTTF) for Memories

- Some assumptions for MTTF modeling:
 - Soft errors arrive at memories following a Poisson distribution.
 - Memory cells are regular, thus soft errors are uniformly distributed across all cells.
 - If memories are protected by ECCs with L correctcapability, at least L+1 errors accumulated by two events in the same word are the dominant situation causing a failure.

MTTF

$$MTTF \mid_{MBU}^{nonscrubbing} \cong MTTF \mid_{SBU} = \frac{1}{\lambda} \cdot \sqrt{\frac{\pi \cdot M}{2}} = \frac{1}{\lambda'} \cdot \sqrt{\frac{\pi \cdot M}{2}}$$

$$MTTF \mid_{MBU}^{scrubbing} \cong MTTF \mid_{SBU} = t_s \cdot \frac{2 \cdot M}{\left(\lambda \cdot t_s\right)^2} = t_s \cdot \frac{2 \cdot M}{\left(\lambda \cdot t_s\right)^2} \quad \text{M. Zhu, 11}$$

 $M' \stackrel{M}{\longleftarrow} P_f$ The level of MTTF will be **overestimated** without considering NBTI.

- *M* and λ are the memory size and event arrival rate under SBU, respectively.
- *M*' and λ ' is the relevant memory size and event arrival rate under MBUs, respectively.
- t_s is the scrubbing interval.
- P_f is the total failure probability in a word caused by two events.

Background

- > SEU
- > NBTI

The proposed reliability model for memories

- Geant4 simulation
- > MTTF modeling
- Simulation results
- Conclusion

Impaction of NBTI on SEU Critical Charge

The SEU critical charge of a 65 nm technology SRAM is reduced under NBTI stress

Relative SEU critical charge versus NBTI stress time. I. E. Moukhtari 13

SRAM Array Hit by Heavy Ions

- Sensitive volume (SV): RPP D. E. Fulkerson 10
- SRAM array: 16 × 16 SVs
- Technology:65 nm
- Ions: ²⁰Ne (2.8 MeV-cm²/mg)
 ⁴⁰Ar (8.6 MeV-cm²/mg)
- Incident angle: 0°, 45°, 79°
- Tool: Geant4

Cross Section

According to the simulated SEU events, cross section can be obtained by:

$$\sigma_{SBU} = \frac{EVent_{1-bit}}{\Phi}$$

$$\sigma_{MBU} = \sum_{i=2}^{\infty} \frac{Event_{i-bit}}{\Phi} = \frac{Event_{2-bit} + Event_{3-bit} + Event_{4-bit} + \cdots}{\Phi}$$

• ϕ is the fluence.

En and

Simulation

- Simulation results of $\sigma_{\rm SBU}$ and $\sigma_{\rm MBU}$ almost fit well with the experiment results. A. D. Tipton 08
- The few disagreement may be caused by the precision of SVs and other process information.

The single-bit upset cross section σ_{SBU} caused by two ions for experiment and simulation for both device orientations.

The single-bit upset cross section σ_{MBU} caused by two ions for experiment and simulation for both device orientations.

Probability of MBUs

 SEU events are simulated by setting different critical charges that are equivalent to different NBTI stress times, the probability of MBUs pMBU can be obtained by:

$$p_{MBU} = \frac{Event_{MBU}}{Event_{SBU} + Event_{MBU}}$$

Probability of MBUs

The probability of MBUs increases when NBTI stress time accumulates, and the trend is approximately exponential.

The probability of MBU caused by ²⁰Ne (2.8 MeVcm²/mg) for three incident angles verse NBTI stress time. The probability of MBU caused by ⁴⁰Ar (8.6 MeVcm²/mg) for three incident angles verse NBTI stress time.

Probability of MBUs

- Part 1: each incident angle
- Part 2: impaction of angles

$$p_{l}^{1} = p_{l} \cdot \left(A_{1} + B_{1} \cdot e^{-\frac{\mathbf{t}}{C_{1}}}\right)$$

$$p_{l}^{2} = p_{l} \cdot \left(1 + c \cdot \frac{\theta^{\circ}}{90^{\circ}}\right)$$

$$M. Zhu, 1$$

$$p_{l}^{2} = p_{l} \cdot \left(1 + \frac{\theta^{\circ}}{10^{\circ}} \cdot \left(A_{2} + B_{2} \cdot e^{-\frac{\mathbf{t}}{C_{2}}}\right)\right)$$

$$p_{l_NBTI} = p_{l} \cdot \left(A_{1} + B_{1} \cdot e^{-\frac{\mathbf{t}}{C_{1}}}\right) \cdot \left(1 + \frac{\theta^{\circ}}{10^{\circ}} \cdot \left(A_{2} + B_{2} \cdot e^{-\frac{\mathbf{t}}{C_{2}}}\right)\right)$$

- p_{I_NBTI} is the probability of *I*-bit MBUs considering NBTI stress time *t*.
- A_1 , B_1 , C_1 , A_2 , B_2 , C_2 , are decided by the type and energy of particle.

 $(A_1 = 14.729, B_1 = -13.729, C_1 = 0.74, A_2 = 0.011, B_2 = 1.2, C_2 = 0.548$ for 2.8 MeV-cm²/mg ²⁰Ne)

• θ is the incident angel of particles.

Failure probability in a word

$$P_{f1} \cong \sum_{i+j>L} \left[p_i \cdot p_j \cdot \left(1 - \frac{L}{N}\right) \right] \quad \text{M. Zhu, 11}$$

$$P_f = \sum_{i+j>L} \left(p_i \cdot p_j \right) \cdot \left(1 - \frac{L}{N}\right) \cdot \left(A_1 + B_1 \cdot e^{-\frac{\mathbf{t}}{C_1}}\right)^2 \cdot \left(1 + \frac{\theta^{\circ}}{10^{\circ}} \cdot \left(A_2 + B_2 \cdot e^{-\frac{\mathbf{t}}{C_2}}\right)\right)^2$$

• *p_i* and *p_i* are the probability of *i*-bit errors and *j*-bit errors produced by one event, respectively.

- *L* is the correction capability of ECC.
- N is the number of bits in a word.

MTTF

$$MTTF_{NBTI} \mid_{MBU}^{nonscrubbing} = \frac{1}{\lambda} \cdot \sqrt{\frac{\pi \cdot M}{2}} = \frac{1}{\lambda} \cdot \sqrt{\frac{\pi \cdot M}{2}}$$
$$\approx \frac{1}{\lambda} \cdot \sqrt{\frac{\pi \cdot M}{2 \cdot \sum_{i+j>L} \left(p_i \cdot p_j\right) \cdot \left(1 - \frac{L}{N}\right)}} \cdot \frac{1}{\left(A_1 + B_1 \cdot e^{-\frac{t}{C_1}}\right) \cdot \left(1 + \frac{\theta^{\circ}}{10^{\circ}} \cdot \left(A_2 + B_2 \cdot e^{-\frac{t}{C_2}}\right)\right)}$$

$$MTTF_{NBTI} \mid_{MBU}^{scrubbing} = t_s \cdot \frac{2 \cdot M}{\left(\lambda' \cdot t_s\right)^2} = t_s \cdot \frac{2 \cdot M}{\left(\lambda \cdot t_s\right)^2}$$
$$\cong t_s \cdot \frac{2 \cdot M}{\left(\lambda \cdot t_s\right)^2 \cdot \sum_{i+j>L} \left(p_i \cdot p_j\right) \cdot \left(1 - \frac{L}{N}\right)} \cdot \frac{1}{\left(A_1 + B_1 \cdot e^{-\frac{t}{C_1}}\right)^2} \cdot \left(1 + \frac{\theta^{\circ}}{10^{\circ}} \cdot \left(A_2 + B_2 \cdot e^{-\frac{t}{C_2}}\right)\right)^2}$$

Background

- > SEU
- > NBTI
- The proposed reliability model for memories
 - Geant4 simulation
 - > MTTF modeling
- Simulation results
- Conclusion

MTTF

- The simulated radiation environment is established by Matlab;
- The memory size is that M=8K words with N=16 bits;
- The correction capability of ECC used is 2;
- The incident angles of particles are 0°, 45°, and 79°;
- The errors that arrive at memory are assigned to Possion distribution;
- The heavy ion is ²⁰Ne (2.8 MeV-cm²/mg);
- The scrubbing period t_s is 0.005.

MTTF

300

250

200

150

100

50

0.00

0.02

0.04

0.06

0.08

MTTF (day)

The predicted MTTFs decrease over the NBTI stress time.

MTTF with different *t* for an M = 8 K, N = 16, L = 2 memory (nonscrubbing) when $\theta = 0^{\circ}$

MTTF with different *t* for an M = 8 K, N = 16, L = 2 memory (scrubbing) when $\theta = 0^{\circ}$

P2

🕇 t=0

🔻 t=7

0.10 0.12 0.14 0.16 0.18 0.20

0 t=1

t=2

Background

- > SEU
- > NBTI
- The proposed reliability model for memories
 - Geant4 simulation
 - > MTTF modeling
- Simulation results
- Conclusion

Conclusion

- Through Geant4 simulation and parametric modeling, this paper proposed a MTTF model including NBTI stress time for 65 nm technology memories protected by ECCs against MBUs.
- The level of MTTF reduces by considering NBTI.
- Designers can evaluate a more accurate reliability for memories by using the proposed model during the early design.

THANK YOU !

