Design of an Energy-Autonomous Bio-Sensing System Using a Biofuel Cell and 0.19V 53µW Integrated Supply-Sensing Sensor with a Supply-Insensitive Temperature Sensor and Inductive-Coupling Transmitter

Atsuki Kobayashi¹, Kei Ikeda¹, Yudai Ogawa², Matsuhiko Nishizawa², Kazuo Nakazato¹, and Kiichi Niitsu^{1, 3}

Nagoya University, Japan
Tohoku University, Japan
JST/PRESTO, Japan

22nd Asia and South Pacific Design Automation Conference Jan. 16-19, 2017 Chiba, Japan

Motivation

Energy source of IoT for healthcare

- Conventional approaches
 - **▶** Battery
 - **▶** Wireless power delivery
 - ► Energy harvesting

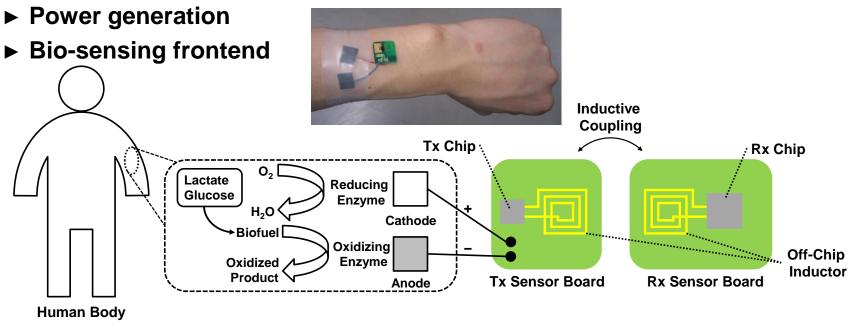
Technical challenges of healthcare applications

Biofuel cells

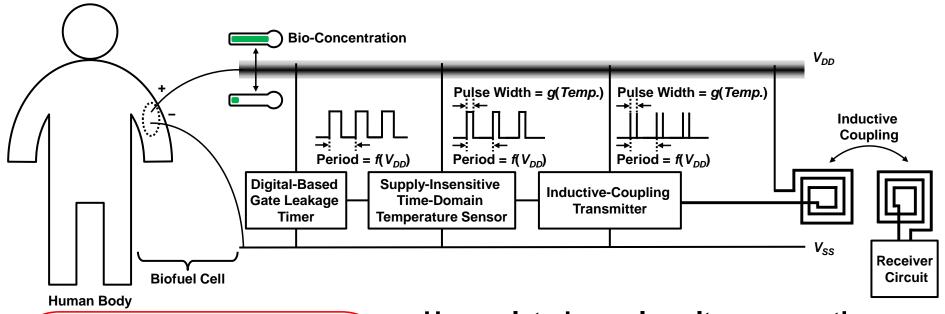
Advantages

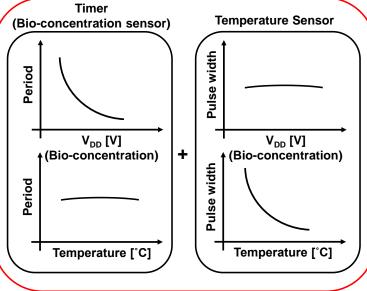
- Stable
- Low cost
- Safe
- Biofuel conversion for bio-sensing

Disadvantages


- Temperature sensitive (Enzyme activity)
- Short lifetime
- Low output voltage/power

"Biofuel-cells-friendly sensing system is required"


Proposed Bio-sensing System


- Biofuel from the human body: Lactate, glucose, ...
 - ▶ Physical activity monitoring, diabetes monitoring, ...
- Biofuel cell: Output power is a function of bio-concentration

- Design
 - ► Supply sensing → Low-voltage and low-power operation
 - **▶** Temperature monitoring → Calibrating enzyme activity

Principles of the Bio-sensing System

- Unregulated supply voltage operation
 - ► Supply sensing: Supply voltage → Bio-concentration
- Temperature-insensitive timer
- Supply-insensitive temperature sensor
- Concept feasibility was confirmed
 - Tx operation: 0.19 V, 53 μW