^{1S-12} A 13.56MHz CMOS Active Diode Full-Wave Rectifier Achieving ZVS with Voltage-Time-Conversion Delay-Locked Loop for Wireless Power Transmission

Keita Yogosawa, Hideki Shinohara and Kousuke Miyaji Department of Electrical and Computer Engineering, Shinshu University

A highly efficient full-wave rectifier with active diodes (AD) for implanted-medical devices $V_{\rm out} = 1-3V$ 0.3 3 $V_{\rm out}$ MP₂ MP₁ **V**_{INP} $V_{\rm NG1}$ 0.2 load 2 Voltage [V] I_{AC1} Current VINP O-0.1 $c_{L} \neq$ R_{L} Inductor VINN O-0.0 Ω V_{NG1} $V_{\rm NG2}$ I_{AC1} I_{AC2} -0.1 -1 MN₂ **MN**₁ 10.47 10.49 10.51 CMP2 CMP1 Time [µs] Forward voltage drop \Rightarrow P/N junction diode : 0.5V **Reverse current flows** Active diode : 0.2V

Zero-voltage switching (ZVS) is needed to suppress reverse current.

ZVS in wide conditions is difficult due to AC input, process variations, etc.

Proposed VTC-DLL Technique

VTC-DLL samples AC input voltage at falling edges of V_{NG1}
and corrects sampled voltage errors with feedback operation.
➡ ZVS is achieved in wide operation conditions.

1S-12

Measurement Results

