A 19-µA Metabolic Equivalents Monitoring SoC using Adaptive Sampling

1S-17

<u>Mio Tsukahara</u>¹, Shintaro Izumi¹, Motofumi Nakanishi¹, Hiroshi Kawaguchi¹, Hiromitsu Kimura², Kyoji Marumoto², Takaaki Fuchikami², Yoshikazu Fujimori², and Masahiko Yoshimoto¹

¹Kobe University, Japan

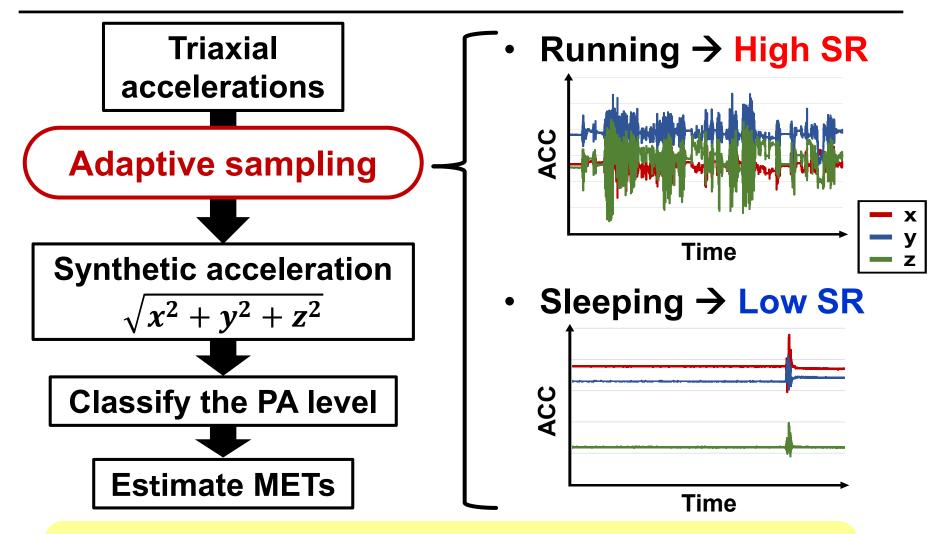
²Rohm Co. Ltd., Japan

Kobe University Integrated Silicon&Software architecture laboratory

METs estimation

METs (Metabolic Equivalents): PA intensity indicator

- 1. Measurement with Douglas bag test
 - O The most accurate way following METs definition
 - × <u>NOT suitable</u> for daily use



2. Estimation method with Triaxial accelerations
O Stress-free way using small accelerometer
× Poor power efficiency with fixed sampling rate

The problem of power should be solved for more user-friendly METs estimation.

http://www.linkdediet.org/hn/modules/pico/index.php?content_id=501

^{1S-17} Prop. METs estimation algorithm

Adaptive sampling can reduce estimation power at low sampling rate.

Hardware implementation

1S-17

System-level current consumption [µ] Test chip Accelerometer 40 **Current consumption** 30 **19 μA** 20 10 0 **Conv. software Prop. Hardware** implementation implementation (fixed 32 Hz) w/ adaptive

Prop. system achieved <u>19 μ A</u> consumption in total.