An FPGA Compatible PLL-Based Sensor Against Fault Injection Attacks

Wei He ${ }^{1}$, Jakub Breier ${ }^{1}$, Shivam Bhasin ${ }^{1}$, Noriyuki Miura², Makoto Nagata²
${ }^{1}$ Temasek Labortaries, Nanyang Technological University, Singapore ${ }^{2}$ Graduate School of Informatics, Kobe University, Japan

ASP DAC 2017, Chiba, Japan.
Jan 17, 2017.
Presentation ID: 1S-18
> Fault Injection Attack (FIA) exploits the intentionally triggered faulty data or physical behaviors from the target devices, in order to extract confidential information about internals.
> Common injection methods are classified: Global and Local
> Global: Low-cost, easy to implement, low precision (clock tampering, voltage glitch, underpowering, temperature)
$>$ Local: Precise and powerful, need expensive equipment, need high expertise (laser, electromagnetic (EM) disturbance)
$>$ We propose a Phased Locked Loop (PLL) and Ring Oscillator (RO) based sensor capable of detecting Laser and EM.
> Watchdog Ring Oscillator (WRO) senses instantaneous energy injected by Laser or EM.
$>$ The PLL monitors the stability of WRO and reports injection by the "LOCKED" output

> WRO routed over sensitive circuit
> Overheads

- Area : 1 PLL + 1 LUT (for WRO), Performance: Nil
- A 100\% fault detection for EM Fault injection with a huge security margin (Min. Injection Power - Min. Detection Power) of 19 dBm
- A 92.82\% detection rate with laser injection and a low failure rate 0.94\% (undetected injections). The security margin is 27% laser power.
- Tested on Virtex-5 and Spartan-6 FPGA from Xilinx.
- Requirement of PLL block can be a limiting factor in lowresource loT devices.

Thanks for your attention!

