A 686Mbps 1.85mm² Near-Optimal Symbol Detector for Spatial Modulation MIMO Systems in 0.18µm CMOS

Hye-yeon Yoon, Gwang-Ho Lee, Tae-Hwan Kim

W KOREA AEROSPACE UNIVERSITY

January 6, 2017 / KOREA AEROSPACE UNIVERSITY

Target system and main contributions

Spatial modulation (SM) MIMO systems ^[1]

Main contributions

- Low-complexity architecture design based on the proposed method
- · Chip level implementation
 - \rightarrow Chip I/O measurement using the oscilloscope and the logic analyzer
 - → Functionality verification under the 'hardware-in-the-loop' environment

[1] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008.

PROPOSED LOW-COMPLEXITY SM-MIMO DETECTOR

- · Distributed sorting based antenna selection
- · low-complexity dual-data-path architecture

The interested readers can be referred to our previous paper [2]

[2] G. H. Lee and T. H. Kim, "Implementation of a Near-Optimal Detector for Spatial Modulation MIMO Systems," IEEE Trans. Circuit Syst. II: Exp. Briefs, in press.

IMPLEMENTATION RESULTS

♦ ASIC with a 0.18µm CMOS technology

: First hardware implementation of the MIMO detector targeting spatial modulation systems

Implementation results

Target MIMO configuration	N _T x 4 SM-MIMO ^{a)}		
Supported modulation schemes	4, 16, 64, 256 QAM		
Detection modes	Modified SVLD ($K = \{1, \dots, 4\}$)		
Architecture	Dual data path architecture		
Technology	0.18µm CMOS		
Maximum operating frequency	286 MHz		
	ASU	64.5K	
Equivalent gate count	DU	22.9K	
	Total	87.4K	

- a) The proposed detector is configurable to support any number of the transmit antennas $(1 \le N_T)$
- b) This result is estimated for 8 x 4 64 QAM SM-MIMO system when K is configured to 4

• Throughput and power consumption

MIMO config.	8×4 QPSK	16 × 4 16QAM	8×4 64QAM	16 imes 4 256QAM
Throughput (Mbps)	286	457	514	686
Power (mW)	75.9	119.3	84.4	139.4

MEASUREMENT RESULTS

- Chip I/O Measurement
 - : Functionality verification

Die photo of the chip

Chip Measurement environment

• **Measurement results** (50MHz,25MHz) Oscilloscope results Log

Logic analyzer results

Request		Response	rst	1 Request	\longleftrightarrow	0
Kequest			Time		Latency : 225 ns	
I	atency : 22.	5 ns	⊕ <mark>□</mark> opmode	0	χ	2
<u>, , , , , , , , , , , , , , , , , , , </u>			⊞ <mark>-</mark> data	C12		09D
			valid	0	Response	1
		rst	1 Request	<	•>	
Request		Response	Time		Latency	: 450 ns
	atency · 45	4 ns	⊕ <mark>-</mark> opmode	0		2
	⊞ <mark>_</mark> data	812		<u> </u>		
			valid	0		Response

KOREA AEROSPACE UNIVERSITY

VERIFICATION RESULTS

Hardware-in-the-loop (HIL) environment

• Verification results Near-optimal BER performance

You can find the details of our implementation in the poster.