A Current-Integration-Based CMOS Amperometric Sensor with 1.2 μm × 2.05 μm Electroless-Plated Microelectrode Array for High-Sensitivity Bacteria Counting

Kohei Gamo¹, Kazuo Nakazato¹, and Kiichi Niitsu¹, ²
¹Nagoya University,
²PRESTO, JST
Realization of high-sensitivity bacteria counting chip

A = 3 B = 2 C = 1 D = 3

Detection Bacteria Counting
A CMOS amperometric sensor

The way to detect bacteria

In amperometry, redox current is reduced when bacteria is on the microelectrode.

The circuitry in sensor chip measures redox current on each electrode and judge whether bacteria is on each electrode.

For high-sensitivity counting

- We developed a microelectrode with size almost same to that of bacteria (about 1 μm).
 → We can detect the number of bacteria.

- To reduce noise, we integrated a current integrator.

- 0.6-μm standard CMOS
- Electrode size: 1.2 μm × 2.05 μm
- Array size: 1024 × 1024
- Detection resolution: 1 cell
Current integrator

① Reset (S1:ON) $V_{out} = 0$

② Integration (S1:OFF)

$$V_{out} = -\frac{1}{C_F} \int_0^{T_{int}} Idt$$

Current integration reduces noise.
→ Improving the detection sensitivity.
Chip microphotograph and measurement results

- **Chip microphotograph**
 - 0.6-μm standard CMOS
 - Electrode size: 1.2 μm × 2.05 μm
 - Array size: 1024 × 1024
 - Detection resolution: 1 cell

- **Partial 2D imaging of silicone**

By comparing both waveforms, we can determine whether the silicone is on the electrode.