A Real-time 17-Scale Object Detection Accelerator with Adaptive 2000-Stage Classification in 65nm CMOS

<u>Minkyu Kim</u>¹, Abinash Mohanty¹, Deepak Kadetotad¹, Naveen Suda³, Luning Wei², Pooja Saseendran¹, Xiaofei He², Yu Cao¹, Jae-sun Seo¹

¹Arizona State University, ²Zhejiang University, ³ARM, Inc.

Overview of Object Detection Hardware

Surveillance (IoT)

Autonomous vehicles

Advanced driver assistance systems

 These smart applications require real-time processing, high frame rates, and low power

Prior works

- Significant improvement has recently been made in algorithms [1-2], GPUs, FPGAs [3], and ASICs [4-5]
 - Still lacks sufficient accuracy, energy-efficiency, programmability for real-time systems

→ Special-purpose ASIC for versatile object detection

M. Mathias, et al., ECCV, 2014. [2] H. Li, et al., CVPR, 2015. [3] S. Advanim, et al., FPL, 2015.
D. Jeon, et al., VLSI, 2015. [5] A. Suleiman and V. Sze, JSPS, 2015.

Programmable Object Detection Accelerator

Object detection algorithm

- We employ the Headhunter model based on rigid templates [1]
 - Integrating a large set of weak boosted classifiers, achieving high-speed object detection
 - Combining multiple HOG/LUV channels
 - Achieving ~state-of-the-art face detection accuracy compared to other works

[1] M. Mathias, et al., ECCV, 2014.

Features

1S-9

- Multiple classes (e.g., face, traffic sign) that are programmable
- Many objects (up to 50) in one image with different sizes
 - 17-scale support with 6 down-scaling and 11 up-scaling
- High accuracy comparable to state-of-the-art algorithms
 - AP (avg. precision) 0.81/0.72 in AFW/BTSD datasets

Multi-Channels/Scales

Non-maximum Suppression

Hardware Architecture & Algorithm Adaptation

Top-level block diagram and data flow

- Algorithm adaptations for hardware efficiency
 - Configurable parameters (e.g., scales, stride, threshold for detection)
 - Weight re-ordering & adaptive classifier cascading

Hardware optimization techniques

- Adaptive pooling, pre-processing for NMS function
- Parallel computation w/ data re-use for multiple search windows

Chip Measurement Results

Chip micrograph in 65nm

Results of multi-class object detection

End-to-end chip meas. environment

Voltage scaling

Precision vs. Recall curve

- Up to 0.81 AP for face with AFW dataset - Up to 0.72 AP for traffic sign with BTSD dataset

Arizona State University

