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Overview of Object Detection Hardware
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 These smart applications require real-time processing, 
high frame rates, and low power

 Prior works
– Significant improvement has recently been made in algorithms [1-2], 

GPUs, FPGAs [3], and ASICs [4-5]
• Still lacks sufficient accuracy, energy-efficiency, programmability for real-time systems

 Special-purpose ASIC for versatile object detection 

Surveillance (IoT) Autonomous vehicles Advanced driver assistance systems
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[1]  M. Mathias, et al., ECCV, 2014. [2] H. Li, et al., CVPR, 2015. [3] S. Advanim, et al., FPL, 2015. 
[4]  D. Jeon, et al., VLSI, 2015. [5] A. Suleiman and V. Sze, JSPS, 2015.
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Programmable Object Detection Accelerator
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 Object detection algorithm
– We employ the Headhunter model based on rigid templates [1]

• Integrating a large set of weak boosted classifiers, achieving high-speed 
object detection

• Combining multiple HOG/LUV channels
• Achieving ~state-of-the-art face detection 

accuracy compared to other works

 Features
– Multiple classes (e.g., face, traffic sign) that are programmable
– Many objects (up to 50) in one image with different sizes

• 17-scale support with 6 down-scaling and 11 up-scaling

– High accuracy comparable to state-of-the-art 
algorithms

• AP (avg. precision) 0.81/0.72 in AFW/BTSD datasets
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[1]  M. Mathias, et al., ECCV, 2014. 
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Hardware Architecture & Algorithm Adaptation
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 Top-level block diagram and data flow

 Algorithm adaptations for hardware efficiency
– Configurable parameters (e.g., scales, stride, threshold for detection)
– Weight re-ordering & adaptive classifier cascading

 Hardware optimization techniques
– Adaptive pooling, pre-processing for NMS function
– Parallel computation w/ data re-use for multiple search windows
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Chip Measurement Results
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Chip micrograph in 65nm Results of multi-class object detection End-to-end chip meas. environment

- 39.8 fps and 159.5mW at 1.0V 
- 16.2 fps and 22.4mW at 0.6V

- Up to 0.81 AP for face with AFW dataset
- Up to 0.72 AP for traffic sign with BTSD dataset

 Voltage scaling  Precision vs. Recall curve

*Average Precision (AP)  
= area under the PR curve
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