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Overview of Object Detection Hardware

Surveillance (IoT)  Autonomous vehicles Advanced driver assistance systems
= These smart applications require real-time processing,
high frame rates, and low power

= Prior works

— Significant improvement has recently been made in algorithms [1-2],
GPUs, FPGAs [3], and ASICs [4-5]
« Still lacks sufficient accuracy, energy-efficiency, programmability for real-time systems

-> Special-purpose ASIC for versatile object detection

[1] M. Mathias, et al., ECCV, 2014. [2] H. Li, et al., CVPR, 2015. [3] S. Advanim, et al., FPL, 2015.
[4] D. Jeon, etal., VLSI, 2015. [5] A. Suleiman and V. Sze, JSPS, 2015.
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Programmable Object Detection Accelerator

= Object detection algorithm

— We employ the Headhunter model based on rigid templates [1]
» Integrating a large set of weak boosted classifiers, achieving high-speed
object detection
e Combining multiple HOG/LUV channels

» Achieving ~state-of-the-art face detection
accuracy compared to other works

[1] M. Mathias, et al., ECCV, 2014.

= Features
— Multiple classes (e.g., face, traffic sign) that are programmable
— Many objects (up to 50) in one image with different sizes __
o 17-scale support with 6 down-scaling and 11 up-scaling /*
_ High accuracy comparable to state-of-the-art et [+ ‘

algorithms —4
« AP (avg. precision) 0.81/0.72 in AFW/BTSD datasets LS
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Hardware Architecture & Algorithm Adaptation

= Top-level block diagram and data flow
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= Algorithm adaptations for hardware efficiency
— Configurable parameters (e.g., scales, stride, threshold for detection)
— Weight re-ordering & adaptive classifier cascading
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= Hardware optimization techniques
— Adaptive pooling, pre-processing for NMS function
— Parallel computation w/ data re-use for multiple search windows
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Chip Measurement Results
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Chip micrograph in 65nm Results of multi-class object detection  End-to-end chip meas. environment
= \oltage scaling = Precision vs. Recall curve
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- 39.8 fps and 159.5mW at 1.0V - Up to 0.81 AP for face with AFW dataset
- 16.2 fps and 22.4mW at 0.6V - Up to 0.72 AP for traffic sign with BTSD dataset
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