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GPUs in Heterogeneous Computing
 Heterogeneous computing have merged as an efficient way for 

application acceleration
 GPUs have been widely used in computer systems
 Data centers, cloud computing, mobile devices, and etc.
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QoS Needs in Mobile GPUs

 A fast GPU preemption mechanism is needed to meet QoS for those 
resource-limited mobile systems

Gaming 3D GUI Image Editing Augmented Reality

 We can also see these 
requirements in: 

AMD HSA FEATURE 
ROADMAP
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GPU Execution Model

 The resource usage per TB from the same kernel is fixed (registers 
and shared memory)
 The allocated resource for a TB must be consecutive
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Design Goal of GPU Preemption

 Reduce preemption latency
 Meet QoS / Satisfy user experience
 Provide flexible task scheduling

 Reduce throughput overhead
 Avoid resource utilization degradation during preemption
 More wasted throughput may cause longer execution time
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Traditional Context Switching

 Modern GPUs can have up to 2048 threads concurrently running on 
an SM
 Take up to 44µs preemption latency assuming peak memory bandwidth (< 

1µs on modern CPUs)

K1

K2

TimeK2 launches

Context
Save

Context
Load

44µs 44µsNVIDIA Kepler
GK110

Preemption 
Latency ↑ 
Throughput 
Overhead ↑
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Related Work: Collaborative Preemption

 Utilize flush and drain collaboratively with context switch to reduce
preemption cost [1]
 Flush: Drop the execution of running TBs
 Switch: Save/Load the context of running TBs
 Drain: Wait for running TBs to finish

[1] J.  J.  K.  Park et al., “Chimera:  Collaborative  Preemption  for  Multitasking  on  a Shared  GPU,”  Proc.  Int.  Conf. 
Architectural  Support  for Programming Languages and Operating Systems (ASPLOS), pp. 593-606, Mar. 2015. 
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Problem Formulation:
The last leaving TB dominates the preemption latency

 Observation: The preemption granularity of prior works is an entire 
SM
 If the preempting kernel can be dispatched once the resources are partially 

released …

(a) Chimera (b) Our Idea

Latency ↓
Throughput ↑
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Related Work: Fine-grained Context 
Switching

 SMK allows multiple kernels to share the resources within an SM [2]
 Partial context switching is proposed to achieve fairness

[2] Z.  Wang et al.,  “Simultaneous  Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing,”  
IEEE  Int.  Symp.  High-Performance  Computer Architecture, Mar. 2016.
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Problem Formulation:
The fragmentation problem degrades the resource utilization

 Naive allocation for the preempting kernel may lead to resource 
fragmentation within an SM
 The required resource for a new TB must be consecutive

Fragmentation
(TB0 and TB3 are not consecutive)
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Fast GPU Preemption Mechanism

 Support Dual-Kernel execution in an SM
 Normal mode: Execute the task as usual
 Preemption mode: Make the high-priority task can preempt as soon as possible

Design Goal: We need a lightweight preemption mechanism for the 
QoS requirement in the mobile system.

Design Challenge
1. Fragmentation problem 

avoidance
2. Preempting victim and 

strategy determination
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Fragmentation Problem Avoidance
Resource Allocation Alignment

 By restricting the allocation positions, resource within an SM can be 
allocated consecutively
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Preempting Victim/ Strategy Determination
Victim Selection

 Step 1. Candidate Victim Sets 
Determination
 A victim set could release the 

required resource for a new TB while 
it is preempted

 Step 2. Preemption Cost Estimation
 Estimate the preemption latency and 

throughput overhead for each victim 
set

 Step 3. Identifying the Final Victim
 Selection Criteria
 Least throughput overhead while 

meeting the preemption latency 
constraint

position 0 position 1 position n
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Preemption Cost Estimation

 Estimate the preemption cost for each candidate with Switch/Drain/Flush
 The cost of a candidate can be derived from the TBs in the candidate
 The preemption latency is bounded by the last leaving TB

 The throughput overhead is the summation of the overhead of each TB
 Throughput overhead is defined as the total wasting instructions during the 

preemption
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Estimation: Preemption Latency
 Switch
 (Context size) / (Mem. BW / # of SMs)

 Flush
 Zero preemption latency

 Drain
 (Remaining instructions) x (Average CPI)

 Draining latency estimation is difficult due to CPI variation across time
 Intra-block Variation
 CPIs may vary across time for the same TB because of indirect memory accesses or 

branch divergences
 Inter-block Variation
 CPIs can also be data dependent, as some TBs access the data regions with better 

locality than the others

 In order to predict the future CPIs more accurately, we choose the way 
that has lower variation
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Estimation: Throughput Overhead

 Switch
 Average IPC x Preemption latency x 2
 The switching overhead is doubled due to both saving/loading the context

 Drain
 Zero throughput overhead due to dual-kernel support

 Flush
 The number of executed instructions
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Experimental Setup

 GPGPU-Sim v3.2.2
 GPU Model: NVIDIA Fermi GTX 480
 128kB registers and 48kB shared memory per SM

 Workloads
 12 benchmarks from Rodinia and Parboil with different resource usage 

and idempotence (restriction of flushing)
 GPGPU benchmark + Synthetic benchmark
 Mimics high-priority tasks with deadline
 Deadline = Preemption latency constraint + Execution time
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Results: Deadline Violation

 On average, Chimera misses deadline for 14.0%, while the proposed 
scheme is 8.4% (Oracle = 6.9%) 
 b+tree shows highest violation rate due to the restriction of flushing and 

many indirect memory accesses
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Results: Throughput Overhead

 We define the throughput overhead as the wasted instructions, the 
results are normalized to Flushing
 The incurred overhead of our scheme is no more than Chimera under 

most of the cases 
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Results: Resource Utilization

 On average, we improve GPU resource utilization by 2.93x over 
Chimera during preemption
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Impact of Preemption Latency Constraint

 We benefits more when the preemption latency constraint increase 
due to the increasing slack time
 Violations: within 2% difference compared with Oracle
 Throughput Overhead: overall 38.6% improvement
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Conclusion

 We propose a simple dual-kernel SM design to support fine-grained 
preemption and a resource allocation policy to avoid fragmentation

 The proposed victim selection scheme is able to make proper 
preemption decisions
 Achieving very low deadline violations while avoiding significant throughput 

degradation effectively
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