Enabling Fast Preemption via Dual-
Kernel Support on GPUs

Li-Wei Shieh!, Kun-Chih Chen?, Hsueh-Chun Fu?, Po-
Han Wang?!, and Chia-Lin Yang!

!National Taiwan University
2National Sun Yat-sen University

Email; kechen@mail.cse.nsysu.edu.tw
Website: https://sites.google.com/site/cereslaben/jimmychen

mailto:kcchen@mail.cse.nsysu.edu.tw
https://sites.google.com/site/cereslaben/jimmychen

CERES L Department of Computer Science and Engineering, NSYSU

GPUs in Heterogeneous Computing

*» Heterogeneous computing have merged as an efficient way for
application acceleration

% GPUs have been widely used in computer systems
++ Data centers, cloud computing, mobile devices, and etc.

P2

CERES Department of Computer Science and Engineering, NSYSU

QoS Needs in Mobile GPUs

* A fast GPU preemption mechanism is needed to meet QoS for those
resource-limited mobile systems

Gaming 3D GUI Image Editing Augmented Reality

Integration Platforms Integration Integration

re q u I re m e n tS I n : Integrate CPU & GPU GPU Compute C++ Unified Address Space GPU compute context

in silicon support for CPU and GPU switch

= We can also see these ’ ’ '

GPU uses pageable
system memory via
CPU pointers

Unified Memory HSA Memory
Controller Management Unit

GPU graphics pre-
emption

Common Bi-Directional Power Fully coherent memory
Manufacturing Mgmt between CPU S ¥ 0 Quality of service
R O A D M A P Technology and GPU between CPU & GPU

P3

CERES

GPU Execution Model

Department of Computer Science and Engineering, NSYSU

* The resource usage per TB from the same kernel is fixed (registers

and shared memory)

+s» The allocated resource for a TB must be consecutive

Kernel (GPU Program)

4
it

Thread Blocks
(TBs) ‘

e
3 ooo

BF

B%

GPU

r

[Block Scheduler]

N

i)
v
SM |[OOQO]| s™m
y v
L2 Cache
¢

Device Memory

Streaming
Multiprocessor

Warp
Scheduler

Warp
Scheduler

Register File

SIMT Lanes

Shared
Memory

L1
Cache

P4

CERES Department of Computer Science and Engineering, NSYSU

Design Goal of GPU Preemption

* Reduce preemption latency
“* Meet QoS / Satisfy user experience
** Provide flexible task scheduling

* Reduce throughput overhead
% Avoid resource utilization degradation during preemption
“* More wasted throughput may cause longer execution time

L)

CERES Department of Computer Science and Engineering, NSYSU

Traditional Context Switching

* Modern GPUs can have up to 2048 threads concurrently running on
an SM

% Take up to 44us preemption latency assuming peak memory bandwidth (<
1us on modern CPUS)

NVIDIA Kepler 44us Preemption 44us
GK110 —"—_ Latency? A —
| 1 Throughput 1

l

K1 Context Overhead 1 Context
Save Load |

l l l l

K2 launches Time

K2

CERES Department of Computer Science and Engineering, NSYSU

Related Work: Collaborative Preemption

+ Utilize flush and drain collaboratively with context switch to reduce
preemption cost [1]

** Flush: Drop the execution of running TBs
% Switch: Save/Load the context of running TBs
¢ Drain: Wait for running TBs to finish

Progress
Flush /1 |
3 V;
V4 w5
: —) '
% Optimal — i
8 SM) | :
3 33(?% Qg ! Drain
\ I
O \ |
|
o |\ |
O Y\ |
\
I
0% 100% M \\ I :
Thread Block Progress (%) \ 3333 I} Switch
— |

[1] J. J. K. Park et al., “Chimera: Collaborative Preemption for Multitasking on a Shared GPU,” Proc. Int. Conf.
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 593-606, Mar. 2015.

CERES Department of Computer Science and Engineering, NSYSU

Problem Formulation:

The last leaving TB dominates the preemption latency TReta0e
*» Observation: The preemption granularity of prior works is an entire
SM
* If the preempting kernel can be dispatched once the resources are partially
released ...
SM | SM
3 s & || e
ok orin 5P | : Drain
| switch 5 | I E switch
(a) Chimera | §§§§§ : » Time (P) Ourldea ([- i i { > Time
K2 launches : K2 launches | : i
@ — @ # toney
| I | atency
@ — @ * Throughput 1
o . B -

P8

CERES Department of Computer Science and Engineering, NSYSU

Related Work: Fine-grained Context
Switching

+» SMK allows multiple kernels to share the resources within an SM [2]
* Partial context switching is proposed to achieve fairness

Partial context SM
e —
switching

SM SM 258
g o _[

35 S i
0 B N G
3 ok 2

S — S — S —

- Resource Utilization T
Fairness T

e R “THa R

[2] Z. Wang et al., “Simultaneous Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing,”
IEEE Int. Symp. High-Performance Computer Architecture, Mar. 2016.

CERES Department of Computer Science and Engineering, NSYSU

Problem Formulation:
The fragmentation problem degrades the resource utilization " Regse™

*+ Naive allocation for the preempting kernel may lead to resource
fragmentation within an SM

** The required resource for a new TB must be consecutive

SM

TB, | TB, | TB, | TB,

: Running B Dispatch a New TB ‘
Fragmentation
: Preempted TB B ‘ g :
IB, [NewTB | TB; (TB, and TB; are not consecutive)
vewte]) - () + ()]
TB, New TB TB,

I P10

CERES Department of Computer Science and Engineering, NSYSU

Fast GPU Preemption Mechanism

Design Goal: We need a lightweight preemption mechanism for the
QoS requirement in the mobile system.

“ Support Dual-Kernel execution in an SM
% Normal mode: Execute the task as usual
% Preemption mode: Make the high-priority task can preempt as soon as possible

2. Preempting victim and

Small \\ Preempting Kemel
#| In-order . \\ Allocation Positions - 0
Resource usage l Processor SM N Strategy determ|nat|0n
and allocation) N Running TB Progress | ——————————————————————————
info.

GPU Dual-Kernel Supported SM .
~ ™ s
s
Preemption o Block Scheduler N /// Register File e —— -
A) = |
Reauest Running Kerne St | 11 i Design Challenge 1
Allocation Status SM M Cach 3
! — — I'1. Fragmentation problem !
GPU Preemplling].(erncl O Running Kernel : . d :
Driver Allocation Status O \ Allocation Positions 1 aVOI an Ce i
\ | |
O | I
i |
i |
1 |

F 3

Progress status of the running TBs

Preemption decision

P11

CERES Department of Computer Science and Engineering, NSYSU

Fragmentation Problem Avoidance
Resource Allocation Alignment

*» By restricting the allocation positions, resource within an SM can be
allocated consecutively

. . » Dispatch a new TB
Position 0 Position 1
osition osition SM Position 0 at Position 0
* v
: Running TB TB, | TB, | TB, | TB; New TB TB, | TB,
: Preempted TB New TB can not
be dispatched ’
S A
TB, | TB, | TB, | TB; New TB TB, | TB,

CERES

SR ARG,
P A
Department of Computer Science and Engineering, NSYSU & 'E\j;\;\ ‘%

Preempting Victim/ Strategy Determination %ﬁ

Victim Selection

1+
IQ”ﬂRenangoo
Dual-Kernel Supported SM
GPU
’:’ Step 1 Candldate VICtIm Sets f Block Scheduler V ScE:iTIer siﬁler
Determination (I) / Register File
. location Status sM
< A victim set could release the e - '
i . reempt‘mg Kernel O Shared L1
required resource for a new TB while Allocation Status 8 \ Memory | Cache
.. \ Running Kemel
It IS preempted IS:::clier M "\ Allocatiot‘% Positions
L= Uy || e
N - - | 4"
s Step 2. Preemption Cost Estimation T ottt s i e
. . Step1 4
% Estimate the preemption latency and Step2 || [Running TB Progress |
throughput overhead for each victim position O position pestiten
Set SM B, | TB;, | TB, TB; B, ,
. Step 1 ! ' '
s Step 3. Identifying the Final Victim LT S N SR
% Selection Criteria Step 2 l " l
» Least throughput overhead while Latency: 3us Latency: dus
ting the preemption latency Overheads 35St orerheads T
mee . Step 3 ‘
constraint
Final Victim: {TB, ;}
(assuming Sus latency constraint)
|

P13

CERES Department of Computer Science and Engineering, NSYSU

Preemption Cost Estimation

+ Estimate the preemption cost for each candidate with Switch/Drain/Flush

+» The cost of a candidate can be derived from the TBs in the candidate
» The preemption latency is bounded by the last leaving TB

P _Latency(Candidatek) = (I%/Iax (P_Latency(TBi))

» The throughput overhead is the summation of the overhead of each TB

Throughput overhead is defined as the total wasting instructions during the
preemption

T _Overhead(Candidatek) = r]il(T _Overhead(TBi))
1=0

CERES Department of Computer Science and Engineering, NSYSU

Estimation: Preemption Latency

s Switch
% (Context size) / (Mem. BW / # of SMs)
» Flush
% Zero preemption latency
» Drain
** (Remaining instructions) x (Average CPI)

% Draining latency estimation is difficult due to CPI variation across time

¢ Intra-block Variation

» CPIs may vary across time for the same TB because of indirect memory accesses or
branch divergences

* Inter-block Variation
» CPIs can also be data dependent, as some TBs access the data regions with better
locality than the others
» In order to predict the future CPIs more accurately, we choose the way
that has lower variation

I P15

L)

L)

CERES Department of Computer Science and Engineering, NSYSU

Estimation: Throughput Overhead

*» Switch
» Average IPC x Preemption latency x 2
» The switching overhead is doubled due to both saving/loading the context

L)

)

L0

4

)

L)

*» Drain
% Zero throughput overhead due to dual-kernel support

+» Flush
«» The number of executed instructions

I P16

CERES Department of Computer Science and Engineering, NSYSU

Experimental Setup

s GPGPU-SImv3.2.2
> GPU Model: NVIDIA Fermi GTX 480
» 128kB registers and 48kB shared memory per SM

L)

)

L0

4

)

L)

«» Workloads

% 12 benchmarks from Rodinia and Parboil with different resource usage
and idempotence (restriction of flushing)

% GPGPU benchmark + Synthetic benchmark
» Mimics high-priority tasks with deadline
» Deadline = Preemption latency constraint + Execution time

L)

CERES Department of Computer Science and Engineering, NSYSU

Results: Deadline Violation

* On average, Chimera misses deadline for 14.0%, while the proposed
scheme is 8.4% (Oracle = 6.9%)

** b+tree shows highest violation rate due to the restriction of flushing and
many indirect memory accesses

B Chimera MProposed [MOracle

__100%
X 80%
g 60%
s 40%
o 20% h
> 0% I (™ — L—| ‘_l
< X L > 5 A & Q. N ©
.(\60 f-,Qo é’z 4&{} @’bo Q}‘c L 4;'5 §
&8 X N XS WL
O F &« 9 RO
< & D M\
&

Violations among multiple preemption requests under
2us latency constraint

P18

CERES Department of Computer Science and Engineering, NSYSU

Results: Throughput Overhead

*» We define the throughput overhead as the wasted instructions, the
results are normalized to Flushing

¢ The incurred overhead of our scheme is no more than Chimera under
most of the cases

More accurate draining
latency estimation

B Chimera M Proposed

[y

)

=

Q.

)

3 5 0.8

£E9 0.6

F £ 04

T 9

N g 02 I

[0

£

S S P &£ & K &

2 . ’% I N (9

& ~<~°“°Q S o *o" &Q £

<2’$'g e?& Nl

Normalized throughput overhead under 2us latency
constraint

L P19

CERES L Department of Computer Science and Engineering, NSYSU

Results: Resource Utilization

% On average, we improve GPU resource utilization by 2.93x over
Chimera during preemption

EChimera ®EProposed

S 60%

c

S

5 40%

=

o 20%

et

>

§ 0%

o ¢ & \é P @ & L K &

\(\b ’@Q é% 41& 00 0 é x Q‘ {cﬁ
\‘& SO S & X © 2
Qo 8’0& ¢
X0

e P20

CERES L Department of Computer Science and Engineering, NSYSU

Impact of Preemption Latency Constraint

*» We benefits more when the preemption latency constraint increase
due to the increasing slack time
** Violations: within 2% difference compared with Oracle
% Throughput Overhead: overall 38.6% improvement

B Chimera B Proposed @Oracle B Chimera MW Proposed
15% 5 0.8
Q.
<)
F 10% 3o 0°
c 0 E®
S = £ 04
© T o
L2 5% Q>
> = 0 0.2
£
0% [™ S 0
2us 3us 4us Sus 2us 3us 4us 5us

P21

CERES Department of Computer Science and Engineering, NSYSU

Conclusion

*» We propose a simple dual-kernel SM design to support fine-grained
preemption and a resource allocation policy to avoid fragmentation

*» The proposed victim selection scheme is able to make proper
preemption decisions

** Achieving very low deadline violations while avoiding significant throughput
degradation effectively

P22

	Enabling Fast Preemption via Dual-Kernel Support on GPUs
	GPUs in Heterogeneous Computing
	QoS Needs in Mobile GPUs
	GPU Execution Model
	Design Goal of GPU Preemption
	Traditional Context Switching
	Related Work: Collaborative Preemption
	Problem Formulation:�The last leaving TB dominates the preemption latency
	Related Work: Fine-grained Context Switching
	Problem Formulation:�The fragmentation problem degrades the resource utilization
	Fast GPU Preemption Mechanism
	Fragmentation Problem Avoidance�Resource Allocation Alignment
	Preempting Victim/ Strategy Determination�Victim Selection
	Preemption Cost Estimation
	Estimation: Preemption Latency
	Estimation: Throughput Overhead
	Experimental Setup
	Results: Deadline Violation
	Results: Throughput Overhead
	Results: Resource Utilization
	Impact of Preemption Latency Constraint
	Conclusion

