
CERES LAB

Department of Computer Science and Engineering, NSYSU

Enabling Fast Preemption via Dual-
Kernel Support on GPUs

Li-Wei Shieh1, Kun-Chih Chen2, Hsueh-Chun Fu1, Po-
Han Wang1, and Chia-Lin Yang1

1National Taiwan University
2National Sun Yat-sen University

Email: kcchen@mail.cse.nsysu.edu.tw
Website: https://sites.google.com/site/cereslaben/jimmychen

mailto:kcchen@mail.cse.nsysu.edu.tw
https://sites.google.com/site/cereslaben/jimmychen

CERES LAB Department of Computer Science and Engineering, NSYSU

P2

GPUs in Heterogeneous Computing
 Heterogeneous computing have merged as an efficient way for

application acceleration
 GPUs have been widely used in computer systems
 Data centers, cloud computing, mobile devices, and etc.

CERES LAB Department of Computer Science and Engineering, NSYSU

P3

QoS Needs in Mobile GPUs

 A fast GPU preemption mechanism is needed to meet QoS for those
resource-limited mobile systems

Gaming 3D GUI Image Editing Augmented Reality

 We can also see these
requirements in:

AMD HSA FEATURE
ROADMAP

CERES LAB Department of Computer Science and Engineering, NSYSU

P4

GPU Execution Model

 The resource usage per TB from the same kernel is fixed (registers
and shared memory)
 The allocated resource for a TB must be consecutive

Threads

Kernel (GPU Program)

Thread Blocks
(TBs)

GPU

Block Scheduler

SMSM

Streaming
Multiprocessor

L2 Cache

Device Memory

SIMT Lanes

Warp
Scheduler

Warp
Scheduler

Register File

L1
Cache

Shared
Memory

CERES LAB Department of Computer Science and Engineering, NSYSU

P5

Design Goal of GPU Preemption

 Reduce preemption latency
 Meet QoS / Satisfy user experience
 Provide flexible task scheduling

 Reduce throughput overhead
 Avoid resource utilization degradation during preemption
 More wasted throughput may cause longer execution time

CERES LAB Department of Computer Science and Engineering, NSYSU

P6

Traditional Context Switching

 Modern GPUs can have up to 2048 threads concurrently running on
an SM
 Take up to 44µs preemption latency assuming peak memory bandwidth (<

1µs on modern CPUs)

K1

K2

TimeK2 launches

Context
Save

Context
Load

44µs 44µsNVIDIA Kepler
GK110

Preemption
Latency ↑
Throughput
Overhead ↑

CERES LAB Department of Computer Science and Engineering, NSYSU

P7

Related Work: Collaborative Preemption

 Utilize flush and drain collaboratively with context switch to reduce
preemption cost [1]
 Flush: Drop the execution of running TBs
 Switch: Save/Load the context of running TBs
 Drain: Wait for running TBs to finish

[1] J. J. K. Park et al., “Chimera: Collaborative Preemption for Multitasking on a Shared GPU,” Proc. Int. Conf.
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 593-606, Mar. 2015.

CERES LAB Department of Computer Science and Engineering, NSYSU

P8

Problem Formulation:
The last leaving TB dominates the preemption latency

 Observation: The preemption granularity of prior works is an entire
SM
 If the preempting kernel can be dispatched once the resources are partially

released …

(a) Chimera (b) Our Idea

Latency ↓
Throughput ↑

CERES LAB Department of Computer Science and Engineering, NSYSU

P9

Related Work: Fine-grained Context
Switching

 SMK allows multiple kernels to share the resources within an SM [2]
 Partial context switching is proposed to achieve fairness

[2] Z. Wang et al., “Simultaneous Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing,”
IEEE Int. Symp. High-Performance Computer Architecture, Mar. 2016.

CERES LAB Department of Computer Science and Engineering, NSYSU

P10

Problem Formulation:
The fragmentation problem degrades the resource utilization

 Naive allocation for the preempting kernel may lead to resource
fragmentation within an SM
 The required resource for a new TB must be consecutive

Fragmentation
(TB0 and TB3 are not consecutive)

CERES LAB Department of Computer Science and Engineering, NSYSU

P11

Fast GPU Preemption Mechanism

 Support Dual-Kernel execution in an SM
 Normal mode: Execute the task as usual
 Preemption mode: Make the high-priority task can preempt as soon as possible

Design Goal: We need a lightweight preemption mechanism for the
QoS requirement in the mobile system.

Design Challenge
1. Fragmentation problem

avoidance
2. Preempting victim and

strategy determination

CERES LAB Department of Computer Science and Engineering, NSYSU

P12

Fragmentation Problem Avoidance
Resource Allocation Alignment

 By restricting the allocation positions, resource within an SM can be
allocated consecutively

CERES LAB Department of Computer Science and Engineering, NSYSU

P13

Preempting Victim/ Strategy Determination
Victim Selection

 Step 1. Candidate Victim Sets
Determination
 A victim set could release the

required resource for a new TB while
it is preempted

 Step 2. Preemption Cost Estimation
 Estimate the preemption latency and

throughput overhead for each victim
set

 Step 3. Identifying the Final Victim
 Selection Criteria
 Least throughput overhead while

meeting the preemption latency
constraint

position 0 position 1 position n

CERES LAB Department of Computer Science and Engineering, NSYSU

P14

Preemption Cost Estimation

 Estimate the preemption cost for each candidate with Switch/Drain/Flush
 The cost of a candidate can be derived from the TBs in the candidate
 The preemption latency is bounded by the last leaving TB

 The throughput overhead is the summation of the overhead of each TB
 Throughput overhead is defined as the total wasting instructions during the

preemption

))(_(
1...0

)(_ TBiLatencyP
ni

MaxCandidatekLatencyP
−=

=

∑
−

=
=

1
0

))(_()(_
n
i

TBiOverheadTCandidatekOverheadT

CERES LAB Department of Computer Science and Engineering, NSYSU

P15

Estimation: Preemption Latency
 Switch
 (Context size) / (Mem. BW / # of SMs)

 Flush
 Zero preemption latency

 Drain
 (Remaining instructions) x (Average CPI)

 Draining latency estimation is difficult due to CPI variation across time
 Intra-block Variation
 CPIs may vary across time for the same TB because of indirect memory accesses or

branch divergences
 Inter-block Variation
 CPIs can also be data dependent, as some TBs access the data regions with better

locality than the others

 In order to predict the future CPIs more accurately, we choose the way
that has lower variation

CERES LAB Department of Computer Science and Engineering, NSYSU

P16

Estimation: Throughput Overhead

 Switch
 Average IPC x Preemption latency x 2
 The switching overhead is doubled due to both saving/loading the context

 Drain
 Zero throughput overhead due to dual-kernel support

 Flush
 The number of executed instructions

CERES LAB Department of Computer Science and Engineering, NSYSU

P17

Experimental Setup

 GPGPU-Sim v3.2.2
 GPU Model: NVIDIA Fermi GTX 480
 128kB registers and 48kB shared memory per SM

 Workloads
 12 benchmarks from Rodinia and Parboil with different resource usage

and idempotence (restriction of flushing)
 GPGPU benchmark + Synthetic benchmark
 Mimics high-priority tasks with deadline
 Deadline = Preemption latency constraint + Execution time

CERES LAB Department of Computer Science and Engineering, NSYSU

P18

Results: Deadline Violation

 On average, Chimera misses deadline for 14.0%, while the proposed
scheme is 8.4% (Oracle = 6.9%)
 b+tree shows highest violation rate due to the restriction of flushing and

many indirect memory accesses

0%
20%
40%
60%
80%

100%

Vi
ol

at
io

ns
 (%

)

Chimera Proposed Oracle

Violations among multiple preemption requests under
2us latency constraint

CERES LAB Department of Computer Science and Engineering, NSYSU

P19

Results: Throughput Overhead

 We define the throughput overhead as the wasted instructions, the
results are normalized to Flushing
 The incurred overhead of our scheme is no more than Chimera under

most of the cases

0
0.2
0.4
0.6
0.8

1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

O
ve

rh
ea

d

Chimera Proposed

Normalized throughput overhead under 2us latency
constraint

More accurate draining
latency estimation

CERES LAB Department of Computer Science and Engineering, NSYSU

P20

Results: Resource Utilization

 On average, we improve GPU resource utilization by 2.93x over
Chimera during preemption

0%

20%

40%

60%

R
es

ou
rc

e
U

til
iz

at
io

n(
%

) Chimera Proposed

CERES LAB Department of Computer Science and Engineering, NSYSU

P21

Impact of Preemption Latency Constraint

 We benefits more when the preemption latency constraint increase
due to the increasing slack time
 Violations: within 2% difference compared with Oracle
 Throughput Overhead: overall 38.6% improvement

0%

5%

10%

15%

2us 3us 4us 5us

Vi
ol

at
io

ns
(%

)

Chimera Proposed Oracle

0

0.2

0.4

0.6

0.8

2us 3us 4us 5us

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

O
ve

rh
ea

d

Chimera Proposed

CERES LAB Department of Computer Science and Engineering, NSYSU

P22

Conclusion

 We propose a simple dual-kernel SM design to support fine-grained
preemption and a resource allocation policy to avoid fragmentation

 The proposed victim selection scheme is able to make proper
preemption decisions
 Achieving very low deadline violations while avoiding significant throughput

degradation effectively

	Enabling Fast Preemption via Dual-Kernel Support on GPUs
	GPUs in Heterogeneous Computing
	QoS Needs in Mobile GPUs
	GPU Execution Model
	Design Goal of GPU Preemption
	Traditional Context Switching
	Related Work: Collaborative Preemption
	Problem Formulation:�The last leaving TB dominates the preemption latency
	Related Work: Fine-grained Context Switching
	Problem Formulation:�The fragmentation problem degrades the resource utilization
	Fast GPU Preemption Mechanism
	Fragmentation Problem Avoidance�Resource Allocation Alignment
	Preempting Victim/ Strategy Determination�Victim Selection
	Preemption Cost Estimation
	Estimation: Preemption Latency
	Estimation: Throughput Overhead
	Experimental Setup
	Results: Deadline Violation
	Results: Throughput Overhead
	Results: Resource Utilization
	Impact of Preemption Latency Constraint
	Conclusion

