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GPUs in Heterogeneous Computing

*» Heterogeneous computing have merged as an efficient way for
application acceleration

% GPUs have been widely used in computer systems
++ Data centers, cloud computing, mobile devices, and etc.
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QoS Needs in Mobile GPUs

* A fast GPU preemption mechanism is needed to meet QoS for those
resource-limited mobile systems
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GPU Execution Model
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* The resource usage per TB from the same kernel is fixed (registers

and shared memory)

+s» The allocated resource for a TB must be consecutive
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Design Goal of GPU Preemption

* Reduce preemption latency
“* Meet QoS / Satisfy user experience
** Provide flexible task scheduling

* Reduce throughput overhead
% Avoid resource utilization degradation during preemption
“* More wasted throughput may cause longer execution time
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Traditional Context Switching

* Modern GPUs can have up to 2048 threads concurrently running on
an SM

% Take up to 44us preemption latency assuming peak memory bandwidth (<
1us on modern CPUS)
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Related Work: Collaborative Preemption

+ Utilize flush and drain collaboratively with context switch to reduce
preemption cost [1]

** Flush: Drop the execution of running TBs
% Switch: Save/Load the context of running TBs
¢ Drain: Wait for running TBs to finish
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[1] J. J. K. Park et al., “Chimera: Collaborative Preemption for Multitasking on a Shared GPU,” Proc. Int. Conf.
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 593-606, Mar. 2015.
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Problem Formulation:

The last leaving TB dominates the preemption latency TReta0e
*» Observation: The preemption granularity of prior works is an entire
SM
* If the preempting kernel can be dispatched once the resources are partially
released ...
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Related Work: Fine-grained Context
Switching

+» SMK allows multiple kernels to share the resources within an SM [2]
* Partial context switching is proposed to achieve fairness
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[2] Z. Wang et al., “Simultaneous Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing,”
IEEE Int. Symp. High-Performance Computer Architecture, Mar. 2016.
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Problem Formulation:
The fragmentation problem degrades the resource utilization " Regse™

*+ Naive allocation for the preempting kernel may lead to resource
fragmentation within an SM

** The required resource for a new TB must be consecutive

SM
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Fast GPU Preemption Mechanism

Design Goal: We need a lightweight preemption mechanism for the
QoS requirement in the mobile system.

“ Support Dual-Kernel execution in an SM
% Normal mode: Execute the task as usual
% Preemption mode: Make the high-priority task can preempt as soon as possible

2. Preempting victim and
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Fragmentation Problem Avoidance
Resource Allocation Alignment

*» By restricting the allocation positions, resource within an SM can be
allocated consecutively

. . » Dispatch a new TB
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Preempting Victim/ Strategy Determination %ﬁ
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Preemption Cost Estimation

+ Estimate the preemption cost for each candidate with Switch/Drain/Flush

+» The cost of a candidate can be derived from the TBs in the candidate
» The preemption latency is bounded by the last leaving TB

P _Latency(Candidatek) = (I%/Iax (P_Latency(TBi))

» The throughput overhead is the summation of the overhead of each TB

Throughput overhead is defined as the total wasting instructions during the
preemption

T _Overhead(Candidatek) = r]il(T _Overhead(TBi))
1=0
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Estimation: Preemption Latency

s Switch
% (Context size) / (Mem. BW / # of SMs)
» Flush
% Zero preemption latency
» Drain
** (Remaining instructions) x (Average CPI)

% Draining latency estimation is difficult due to CPI variation across time

¢ Intra-block Variation

» CPIs may vary across time for the same TB because of indirect memory accesses or
branch divergences

* Inter-block Variation
» CPIs can also be data dependent, as some TBs access the data regions with better
locality than the others
» In order to predict the future CPIs more accurately, we choose the way
that has lower variation

I P15
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Estimation: Throughput Overhead

*» Switch
» Average IPC x Preemption latency x 2
» The switching overhead is doubled due to both saving/loading the context
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*» Drain
% Zero throughput overhead due to dual-kernel support

+» Flush
«» The number of executed instructions
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Experimental Setup

s GPGPU-SImv3.2.2
> GPU Model: NVIDIA Fermi GTX 480
» 128kB registers and 48kB shared memory per SM
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«» Workloads

% 12 benchmarks from Rodinia and Parboil with different resource usage
and idempotence (restriction of flushing)

% GPGPU benchmark + Synthetic benchmark
» Mimics high-priority tasks with deadline
» Deadline = Preemption latency constraint + Execution time
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Results: Deadline Violation

* On average, Chimera misses deadline for 14.0%, while the proposed
scheme is 8.4% (Oracle = 6.9%)

** b+tree shows highest violation rate due to the restriction of flushing and
many indirect memory accesses
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Results: Throughput Overhead

*» We define the throughput overhead as the wasted instructions, the
results are normalized to Flushing

¢ The incurred overhead of our scheme is no more than Chimera under
most of the cases

More accurate draining
latency estimation
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Results: Resource Utilization

% On average, we improve GPU resource utilization by 2.93x over
Chimera during preemption
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Impact of Preemption Latency Constraint

*» We benefits more when the preemption latency constraint increase
due to the increasing slack time
** Violations: within 2% difference compared with Oracle
% Throughput Overhead: overall 38.6% improvement
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Conclusion

*» We propose a simple dual-kernel SM design to support fine-grained
preemption and a resource allocation policy to avoid fragmentation

*» The proposed victim selection scheme is able to make proper
preemption decisions

** Achieving very low deadline violations while avoiding significant throughput
degradation effectively
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