
CERES LAB

Department of Computer Science and Engineering, NSYSU

Enabling Fast Preemption via Dual-
Kernel Support on GPUs

Li-Wei Shieh1, Kun-Chih Chen2, Hsueh-Chun Fu1, Po-
Han Wang1, and Chia-Lin Yang1

1National Taiwan University
2National Sun Yat-sen University

Email: kcchen@mail.cse.nsysu.edu.tw
Website: https://sites.google.com/site/cereslaben/jimmychen

mailto:kcchen@mail.cse.nsysu.edu.tw
https://sites.google.com/site/cereslaben/jimmychen

CERES LAB Department of Computer Science and Engineering, NSYSU

P2

GPUs in Heterogeneous Computing
 Heterogeneous computing have merged as an efficient way for

application acceleration
 GPUs have been widely used in computer systems
 Data centers, cloud computing, mobile devices, and etc.

CERES LAB Department of Computer Science and Engineering, NSYSU

P3

QoS Needs in Mobile GPUs

 A fast GPU preemption mechanism is needed to meet QoS for those
resource-limited mobile systems

Gaming 3D GUI Image Editing Augmented Reality

 We can also see these
requirements in:

AMD HSA FEATURE
ROADMAP

CERES LAB Department of Computer Science and Engineering, NSYSU

P4

GPU Execution Model

 The resource usage per TB from the same kernel is fixed (registers
and shared memory)
 The allocated resource for a TB must be consecutive

Threads

Kernel (GPU Program)

Thread Blocks
(TBs)

GPU

Block Scheduler

SMSM

Streaming
Multiprocessor

L2 Cache

Device Memory

SIMT Lanes

Warp
Scheduler

Warp
Scheduler

Register File

L1
Cache

Shared
Memory

CERES LAB Department of Computer Science and Engineering, NSYSU

P5

Design Goal of GPU Preemption

 Reduce preemption latency
 Meet QoS / Satisfy user experience
 Provide flexible task scheduling

 Reduce throughput overhead
 Avoid resource utilization degradation during preemption
 More wasted throughput may cause longer execution time

CERES LAB Department of Computer Science and Engineering, NSYSU

P6

Traditional Context Switching

 Modern GPUs can have up to 2048 threads concurrently running on
an SM
 Take up to 44µs preemption latency assuming peak memory bandwidth (<

1µs on modern CPUs)

K1

K2

TimeK2 launches

Context
Save

Context
Load

44µs 44µsNVIDIA Kepler
GK110

Preemption
Latency ↑
Throughput
Overhead ↑

CERES LAB Department of Computer Science and Engineering, NSYSU

P7

Related Work: Collaborative Preemption

 Utilize flush and drain collaboratively with context switch to reduce
preemption cost [1]
 Flush: Drop the execution of running TBs
 Switch: Save/Load the context of running TBs
 Drain: Wait for running TBs to finish

[1] J. J. K. Park et al., “Chimera: Collaborative Preemption for Multitasking on a Shared GPU,” Proc. Int. Conf.
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 593-606, Mar. 2015.

CERES LAB Department of Computer Science and Engineering, NSYSU

P8

Problem Formulation:
The last leaving TB dominates the preemption latency

 Observation: The preemption granularity of prior works is an entire
SM
 If the preempting kernel can be dispatched once the resources are partially

released …

(a) Chimera (b) Our Idea

Latency ↓
Throughput ↑

CERES LAB Department of Computer Science and Engineering, NSYSU

P9

Related Work: Fine-grained Context
Switching

 SMK allows multiple kernels to share the resources within an SM [2]
 Partial context switching is proposed to achieve fairness

[2] Z. Wang et al., “Simultaneous Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing,”
IEEE Int. Symp. High-Performance Computer Architecture, Mar. 2016.

CERES LAB Department of Computer Science and Engineering, NSYSU

P10

Problem Formulation:
The fragmentation problem degrades the resource utilization

 Naive allocation for the preempting kernel may lead to resource
fragmentation within an SM
 The required resource for a new TB must be consecutive

Fragmentation
(TB0 and TB3 are not consecutive)

CERES LAB Department of Computer Science and Engineering, NSYSU

P11

Fast GPU Preemption Mechanism

 Support Dual-Kernel execution in an SM
 Normal mode: Execute the task as usual
 Preemption mode: Make the high-priority task can preempt as soon as possible

Design Goal: We need a lightweight preemption mechanism for the
QoS requirement in the mobile system.

Design Challenge
1. Fragmentation problem

avoidance
2. Preempting victim and

strategy determination

CERES LAB Department of Computer Science and Engineering, NSYSU

P12

Fragmentation Problem Avoidance
Resource Allocation Alignment

 By restricting the allocation positions, resource within an SM can be
allocated consecutively

CERES LAB Department of Computer Science and Engineering, NSYSU

P13

Preempting Victim/ Strategy Determination
Victim Selection

 Step 1. Candidate Victim Sets
Determination
 A victim set could release the

required resource for a new TB while
it is preempted

 Step 2. Preemption Cost Estimation
 Estimate the preemption latency and

throughput overhead for each victim
set

 Step 3. Identifying the Final Victim
 Selection Criteria
 Least throughput overhead while

meeting the preemption latency
constraint

position 0 position 1 position n

CERES LAB Department of Computer Science and Engineering, NSYSU

P14

Preemption Cost Estimation

 Estimate the preemption cost for each candidate with Switch/Drain/Flush
 The cost of a candidate can be derived from the TBs in the candidate
 The preemption latency is bounded by the last leaving TB

 The throughput overhead is the summation of the overhead of each TB
 Throughput overhead is defined as the total wasting instructions during the

preemption

))(_(
1...0

)(_ TBiLatencyP
ni

MaxCandidatekLatencyP
−=

=

∑
−

=
=

1
0

))(_()(_
n
i

TBiOverheadTCandidatekOverheadT

CERES LAB Department of Computer Science and Engineering, NSYSU

P15

Estimation: Preemption Latency
 Switch
 (Context size) / (Mem. BW / # of SMs)

 Flush
 Zero preemption latency

 Drain
 (Remaining instructions) x (Average CPI)

 Draining latency estimation is difficult due to CPI variation across time
 Intra-block Variation
 CPIs may vary across time for the same TB because of indirect memory accesses or

branch divergences
 Inter-block Variation
 CPIs can also be data dependent, as some TBs access the data regions with better

locality than the others

 In order to predict the future CPIs more accurately, we choose the way
that has lower variation

CERES LAB Department of Computer Science and Engineering, NSYSU

P16

Estimation: Throughput Overhead

 Switch
 Average IPC x Preemption latency x 2
 The switching overhead is doubled due to both saving/loading the context

 Drain
 Zero throughput overhead due to dual-kernel support

 Flush
 The number of executed instructions

CERES LAB Department of Computer Science and Engineering, NSYSU

P17

Experimental Setup

 GPGPU-Sim v3.2.2
 GPU Model: NVIDIA Fermi GTX 480
 128kB registers and 48kB shared memory per SM

 Workloads
 12 benchmarks from Rodinia and Parboil with different resource usage

and idempotence (restriction of flushing)
 GPGPU benchmark + Synthetic benchmark
 Mimics high-priority tasks with deadline
 Deadline = Preemption latency constraint + Execution time

CERES LAB Department of Computer Science and Engineering, NSYSU

P18

Results: Deadline Violation

 On average, Chimera misses deadline for 14.0%, while the proposed
scheme is 8.4% (Oracle = 6.9%)
 b+tree shows highest violation rate due to the restriction of flushing and

many indirect memory accesses

0%
20%
40%
60%
80%

100%

Vi
ol

at
io

ns
 (%

)

Chimera Proposed Oracle

Violations among multiple preemption requests under
2us latency constraint

CERES LAB Department of Computer Science and Engineering, NSYSU

P19

Results: Throughput Overhead

 We define the throughput overhead as the wasted instructions, the
results are normalized to Flushing
 The incurred overhead of our scheme is no more than Chimera under

most of the cases

0
0.2
0.4
0.6
0.8

1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

O
ve

rh
ea

d

Chimera Proposed

Normalized throughput overhead under 2us latency
constraint

More accurate draining
latency estimation

CERES LAB Department of Computer Science and Engineering, NSYSU

P20

Results: Resource Utilization

 On average, we improve GPU resource utilization by 2.93x over
Chimera during preemption

0%

20%

40%

60%

R
es

ou
rc

e
U

til
iz

at
io

n(
%

) Chimera Proposed

CERES LAB Department of Computer Science and Engineering, NSYSU

P21

Impact of Preemption Latency Constraint

 We benefits more when the preemption latency constraint increase
due to the increasing slack time
 Violations: within 2% difference compared with Oracle
 Throughput Overhead: overall 38.6% improvement

0%

5%

10%

15%

2us 3us 4us 5us

Vi
ol

at
io

ns
(%

)

Chimera Proposed Oracle

0

0.2

0.4

0.6

0.8

2us 3us 4us 5us

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

O
ve

rh
ea

d

Chimera Proposed

CERES LAB Department of Computer Science and Engineering, NSYSU

P22

Conclusion

 We propose a simple dual-kernel SM design to support fine-grained
preemption and a resource allocation policy to avoid fragmentation

 The proposed victim selection scheme is able to make proper
preemption decisions
 Achieving very low deadline violations while avoiding significant throughput

degradation effectively

	Enabling Fast Preemption via Dual-Kernel Support on GPUs
	GPUs in Heterogeneous Computing
	QoS Needs in Mobile GPUs
	GPU Execution Model
	Design Goal of GPU Preemption
	Traditional Context Switching
	Related Work: Collaborative Preemption
	Problem Formulation:�The last leaving TB dominates the preemption latency
	Related Work: Fine-grained Context Switching
	Problem Formulation:�The fragmentation problem degrades the resource utilization
	Fast GPU Preemption Mechanism
	Fragmentation Problem Avoidance�Resource Allocation Alignment
	Preempting Victim/ Strategy Determination�Victim Selection
	Preemption Cost Estimation
	Estimation: Preemption Latency
	Estimation: Throughput Overhead
	Experimental Setup
	Results: Deadline Violation
	Results: Throughput Overhead
	Results: Resource Utilization
	Impact of Preemption Latency Constraint
	Conclusion

