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GPUs in Heterogeneous Computing
 Heterogeneous computing have merged as an efficient way for 

application acceleration
 GPUs have been widely used in computer systems
 Data centers, cloud computing, mobile devices, and etc.
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QoS Needs in Mobile GPUs

 A fast GPU preemption mechanism is needed to meet QoS for those 
resource-limited mobile systems

Gaming 3D GUI Image Editing Augmented Reality

 We can also see these 
requirements in: 

AMD HSA FEATURE 
ROADMAP
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GPU Execution Model

 The resource usage per TB from the same kernel is fixed (registers 
and shared memory)
 The allocated resource for a TB must be consecutive
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Design Goal of GPU Preemption

 Reduce preemption latency
 Meet QoS / Satisfy user experience
 Provide flexible task scheduling

 Reduce throughput overhead
 Avoid resource utilization degradation during preemption
 More wasted throughput may cause longer execution time
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Traditional Context Switching

 Modern GPUs can have up to 2048 threads concurrently running on 
an SM
 Take up to 44µs preemption latency assuming peak memory bandwidth (< 

1µs on modern CPUs)

K1

K2

TimeK2 launches

Context
Save

Context
Load

44µs 44µsNVIDIA Kepler
GK110

Preemption 
Latency ↑ 
Throughput 
Overhead ↑
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Related Work: Collaborative Preemption

 Utilize flush and drain collaboratively with context switch to reduce
preemption cost [1]
 Flush: Drop the execution of running TBs
 Switch: Save/Load the context of running TBs
 Drain: Wait for running TBs to finish

[1] J.  J.  K.  Park et al., “Chimera:  Collaborative  Preemption  for  Multitasking  on  a Shared  GPU,”  Proc.  Int.  Conf. 
Architectural  Support  for Programming Languages and Operating Systems (ASPLOS), pp. 593-606, Mar. 2015. 
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Problem Formulation:
The last leaving TB dominates the preemption latency

 Observation: The preemption granularity of prior works is an entire 
SM
 If the preempting kernel can be dispatched once the resources are partially 

released …

(a) Chimera (b) Our Idea

Latency ↓
Throughput ↑
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Related Work: Fine-grained Context 
Switching

 SMK allows multiple kernels to share the resources within an SM [2]
 Partial context switching is proposed to achieve fairness

[2] Z.  Wang et al.,  “Simultaneous  Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing,”  
IEEE  Int.  Symp.  High-Performance  Computer Architecture, Mar. 2016.
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Problem Formulation:
The fragmentation problem degrades the resource utilization

 Naive allocation for the preempting kernel may lead to resource 
fragmentation within an SM
 The required resource for a new TB must be consecutive

Fragmentation
(TB0 and TB3 are not consecutive)
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Fast GPU Preemption Mechanism

 Support Dual-Kernel execution in an SM
 Normal mode: Execute the task as usual
 Preemption mode: Make the high-priority task can preempt as soon as possible

Design Goal: We need a lightweight preemption mechanism for the 
QoS requirement in the mobile system.

Design Challenge
1. Fragmentation problem 

avoidance
2. Preempting victim and 

strategy determination
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Fragmentation Problem Avoidance
Resource Allocation Alignment

 By restricting the allocation positions, resource within an SM can be 
allocated consecutively
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Preempting Victim/ Strategy Determination
Victim Selection

 Step 1. Candidate Victim Sets 
Determination
 A victim set could release the 

required resource for a new TB while 
it is preempted

 Step 2. Preemption Cost Estimation
 Estimate the preemption latency and 

throughput overhead for each victim 
set

 Step 3. Identifying the Final Victim
 Selection Criteria
 Least throughput overhead while 

meeting the preemption latency 
constraint

position 0 position 1 position n
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Preemption Cost Estimation

 Estimate the preemption cost for each candidate with Switch/Drain/Flush
 The cost of a candidate can be derived from the TBs in the candidate
 The preemption latency is bounded by the last leaving TB

 The throughput overhead is the summation of the overhead of each TB
 Throughput overhead is defined as the total wasting instructions during the 

preemption
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Estimation: Preemption Latency
 Switch
 (Context size) / (Mem. BW / # of SMs)

 Flush
 Zero preemption latency

 Drain
 (Remaining instructions) x (Average CPI)

 Draining latency estimation is difficult due to CPI variation across time
 Intra-block Variation
 CPIs may vary across time for the same TB because of indirect memory accesses or 

branch divergences
 Inter-block Variation
 CPIs can also be data dependent, as some TBs access the data regions with better 

locality than the others

 In order to predict the future CPIs more accurately, we choose the way 
that has lower variation
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Estimation: Throughput Overhead

 Switch
 Average IPC x Preemption latency x 2
 The switching overhead is doubled due to both saving/loading the context

 Drain
 Zero throughput overhead due to dual-kernel support

 Flush
 The number of executed instructions
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Experimental Setup

 GPGPU-Sim v3.2.2
 GPU Model: NVIDIA Fermi GTX 480
 128kB registers and 48kB shared memory per SM

 Workloads
 12 benchmarks from Rodinia and Parboil with different resource usage 

and idempotence (restriction of flushing)
 GPGPU benchmark + Synthetic benchmark
 Mimics high-priority tasks with deadline
 Deadline = Preemption latency constraint + Execution time
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Results: Deadline Violation

 On average, Chimera misses deadline for 14.0%, while the proposed 
scheme is 8.4% (Oracle = 6.9%) 
 b+tree shows highest violation rate due to the restriction of flushing and 

many indirect memory accesses
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Results: Throughput Overhead

 We define the throughput overhead as the wasted instructions, the 
results are normalized to Flushing
 The incurred overhead of our scheme is no more than Chimera under 

most of the cases 
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Results: Resource Utilization

 On average, we improve GPU resource utilization by 2.93x over 
Chimera during preemption
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Impact of Preemption Latency Constraint

 We benefits more when the preemption latency constraint increase 
due to the increasing slack time
 Violations: within 2% difference compared with Oracle
 Throughput Overhead: overall 38.6% improvement

0%

5%

10%

15%

2us 3us 4us 5us

Vi
ol

at
io

ns
(%

)

Chimera Proposed Oracle

0

0.2

0.4

0.6

0.8

2us 3us 4us 5us

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t 

O
ve

rh
ea

d

Chimera Proposed



CERES LAB Department of Computer Science and Engineering, NSYSU

P22

Conclusion

 We propose a simple dual-kernel SM design to support fine-grained 
preemption and a resource allocation policy to avoid fragmentation

 The proposed victim selection scheme is able to make proper 
preemption decisions
 Achieving very low deadline violations while avoiding significant throughput 

degradation effectively
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