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Introduction

 Coarse-grain reconfigurable architecture 
(CGRA)
 Processing Elements (PEs) arranged as 2D structure
 PE reconfiguration through Instruction register
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Introduction

 CGRAs are coupled to a general purpose 
processor, where the processor executes the 
control parts and delegates data-flow parts to the 
CGRA
 Communication overhead + memory operation overhead

not suitable for low power solutions
 Existing CGRAs mostly rely on partial and full 

predication techniques to support conditional 
branches
 Increased number of operations and performance decay 

lead to higher energy consumption
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Background

 Control flow
 Loops and conditionals

 Solutions for loops : Software pipelining for 
innermost loop only
 No hardware support necessary

 Solutions for conditionals : partial and full 
predication
 Hardware support necessary for the predication 
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Background

 Partial predication
 Executes both (if and else) paths 
 Chooses the correct result later by 

using a predicated instruction 
(conditional move)

 Full predication
 The operations that update the same 

variable are mapped to the same PE 
but at different times

 The correct value of the output will 
be present in the PE after the 
maximum time
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Contribution

 Register allocation based approach to execute full 
control flow (branches & loops) on CGRAs in an 
ultra-low-power (ULP) environment, 
 Helps mapping of any depth of loops and conditionals
 Assists execution of kernels completely releasing the 

host processor from performing outer loops control
 Addresses standalone execution of all the levels of the 

loops, and conditionals
 CGRA architectural template targeted to execute 

full kernels in ultra low power (ULP) environment, 
supporting execution of jump and conditional jump
instructions
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Problem formulation
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X1 = 10;
X2 = 20;
X3 = 500;
X4 = 30;
X5 = 50
for(i = 0; i < q; i++)
{
 a = m[i] * X1;
 b = n[i] * X2;
 c = b + a;
 if(c < X3)

p[i] = c * X4;
 else

p[i] = c * X5;
}

BB_1
X1 = 10; X2 = 20;
X3 = 500; X4 = 30;
X5 = 50; i = 0;

BB_2
i  <  q;

BB_7
i  ++;

BB_3
a = m[i] * X1;
b = n[i] * X2; 
c = b + a;

BB_4
c < X3;

BB_5
p[i] = c * X4;

BB_6
p[i] = c * X5;

jmp

cjmp

jmp

jmp jmpjmp

BB_8
Outside 
the for 

loop
cjmp

(a) Sample program

(b) Corresponding CDFG



Problem formulation

 Basic blocks => DFG
 Control flow => jmp, cjmp
 Execution of basic blocks 

mutually exclusive => discrete 
mapping of basic blocks

 Individual mapping of basic 
blocks creates placement 
constraints
 Ex: placement of c (reg_c) in 

BB_3, BB_4, BB_5, BB_6 must be 
same

 Variables with such placement 
constraints => Symbol variables
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Problem formulation
 Behavioral classification of the 

placement constraints 
 Target location constraints (TLC)

 Ex: For a mapping order of 
BB_1, BB_3: reg_X1, and 
reg_X2 in BB_3 is TLC

 Reserved location constraints (RLC)
 Ex: For a mapping order of 

BB_1, BB_3: reg_X3, reg_X4, 
reg_X5 in BB_3 are RLCs
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Problem formulation

 Increase in the number of TLCs and RLCs induce 
complexity in mapping

 The number of TLCs and RLCs varies on traversal 
of the CDFG

 Basic solution: systematic load-store based 
approach
 Introducing memory operation nullifies the placement 

problem
 Not an energy efficient solutions (increased memory 

operation)
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Proposed Method

 Register allocation based approach
 Except array inputs and outputs, all the scalar variables 

are placed in the register files of the PEs
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X1 = 10;
X2 = 20;
X3 = 500;
X4 = 30;
X5 = 50
for(i = 0; i < q; i++)
{
 a = m[i] * X1;
 b = n[i] * X2;
 c = b + a;
 if(c < X3)

p[i] = c * X4;
 else

p[i] = c * X5;
}

 In the sample program m, n 
are input arrays, and p is 
output array
 Input arrays are loaded from 

memory
 Output arrays are stored in 

memory
 All the other variables are 

placed in register files (no 
memory operations)



Proposed Method

 Register allocation based approach
 Except array inputs and outputs, all the scalar variables 

are placed in the register files of the PEs
 Modified Forward traversal of CDFG to minimize the 

number of TLC and RLCs
 Forward breadth first traversal helps the basic blocks with 

greater number of symbol nodes are mapped earlier => 
reduction in the number of constraints.
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Proposed Method

 Register allocation based approach
 Except array inputs and outputs, all the scalar variables 

are placed in the register files of the PEs
 Modified Forward traversal of CDFG to minimize the 

number of TLC and RLCs
 Forward breadth first traversal helps the basic blocks with 

greater number of symbol nodes are mapped earlier => 
reduction in the number of constraints.

 Introduce routing to respect TLC or RLC, while mapping
the basic blocks

19



Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while 
mapping the basic blocks 

20

BB_3



Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while 
mapping the basic blocks 

21

BB_3

TLC

RLC



Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while 
mapping the basic blocks 

22

BB_3

TLC

RLC



Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while 
mapping the basic blocks 

23

BB_3

TLC

RLC



Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while 
mapping the basic blocks 

24

BB_3

TLC

RLC



Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while 
mapping the basic blocks 

25

BB_3

TLC

RLC



Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

26



Proposed architecture: the grid

 4x4 PE array
 Each PE is connected with 

4 neighbours
 Supports MIMD execution 

model
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PE 1 PE 2 PE 3 PE 4

PE 5 PE 6 PE 7 PE 8

PE 9 PE 10 PE 11 PE 12

PE 13 PE 14 PE 15 PE 16

4x4 CGRA with mesh torus 

interconnect network



Proposed architecture: the PE

 32 bit ALU, shifter
and 16x16 bit 
multiplier

 Optional load-store 
unit (LSU)

 Regular register file 
(RRF) and output 
register (OR) to store 
temporary variables

 Constant register file 
(CRF) for constants

 Controller for 
selecting the address 
of next instruction
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Proposed architecture: the PE
 Cond Register is 

one bit register, 
contains:
 0 => true conditions
 1 => false conditions 

 The boolean OR of 
all the control bits 
from all the PEs 
gives the indication 
of false condition 
execution
 In next cycle, offset 

address of the basic 
block from false path 
is fetched.

 Stall signals indicate 
memory access 
congestions
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Experimental results

 Experimental setup
 Fully automated mapping through a software tool 

implemented by using Java and Eclipse Modeling 
Framework (EMF). GCC 4.8 is used to generate CDFGs 
from applications described in C language

 Performance comparison of the proposed register based 
approach and the basic systematic load-store based 
approach with respect to CPU
 A cycle accurate model of the CGRA architecture is 

implemented in C++
 OR1K is the chosen CPU. Instruction set simulations are 

done with the toolchain provided by OVPsim
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Experimental results
 Performance comparison of the proposed register based approach and 

the basic systematic load-store based approach in a CGRA with infinite 
memory bandwidth with respect to CPU
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Experimental results
 The speed-up decreases with the compilation option 

 very aggressive optimizations on loops are performed on the cpu
with higher optimization options.
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Experimental results
 Performance comparison of the proposed register based approach and 

the basic systematic load-store based approach in a CGRA with limited 
bandwidth (top row LSU) with respect to CPU
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Experimental results
 Register based approach performed best all the time with an 

average speed up of 21x compared to that of CPU
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Experimental results

 Area and energy consumption comparisons
 Post synthesis implementation of CGRA and CPU in 

STMicroelectronics 28nm UTBB FD-SOI technology.
 Synopsys Design Compiler => synthesis, and 

PrimePower => power analysis
 @ 0.6V supply voltage at the temperature of 25°C. 

 In this operating point, the processor can achieve 45 MHz, 
with a power density of 3.54 W/MHz, while a 4x4 CGRA 
achieves 100 MHz and a power density of 1.78 W/MHz  
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Experimental results

 Area comparison of different size of CGRA with 
CPU
 4x4 CGRA is used for our experiments, which comes 

with an 2.7x area overhead compared to CPU
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CPU
Combinational 
(%)

Sequential 
(%)

Total 
overhead 
compared 
to CPU

CGRA 2x2 56.47 43.53 0.8x
CGRA 3x3 52.07 47.93 1.6x
CGRA 4x4 49.62 50.38 2.7x



Experimental results

 Energy consumption comparison for several kernel 
execution in a 4x4 CGRA and a CPU
 An average of 50x gain is achieved in CGRA compared 

to that of CPU
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Opt -O0 opt -O1 opt -O2 opt -O3

kernels

CGRA 
(register 
based)

CGRA (register 
based)

CGRA (register 
based)

CGRA (register 
based) CPU

FFT 238.86x 28.05x 32.33x 32.33x 1
Convolution 11.54x 4.73x 3.93x 3.93x 1
Non_sep_filt
er 42.34x 6.96x 15.47x 15.6x 1
FIR 13.18x 4.04x 3.18x 3.18x 1
Matrix_mul 11x 4x 3x 3x 1
Sep_filter 32.74x 5.59x 10.96x 10.97x 1
Masque5x5 3.33x 2x 2x 2x 1



Experimental results

 Energy consumption (µJ) for several kernel 
execution using register based approach and the 
state of the art predication techniques
 an average of 1.44x and 1.6x energy improvement is 

achieved compared to partial and full predication 
respectively
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Gain compared to
Kernels Partial pred Full pred
FFT 2.43x 2.71x
Convolution 1.11x 1.17x
Non_sep_filter 1.39x 1.47x
FIR 1.26x 1.32x
Matrix_mul 1.5x 2x
Sep_filter 1.29x 1.45x
Masque5x5 1x 1.33x
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Conclusion

 CGRA architecture and mapping approach is 
presented to implement full control flow onto a 
CGRA in an ultra-low-power environment

 The proposed approach overcomes limitations and 
inefficiencies of state of the art predications 
methods, achieving 1.44x and 1.6x energy gain 
over partial and full predication techniques 
respectively

 The proposed approach achieves average speed-
up of 50x and an energy improvement of 21x with 
respect to an embedded CPU with an area 
overhead of 2.7x
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THANK YOU
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