
1

Efficient Mapping of CDFG onto Coarse-Grained
Reconfigurable Array Architectures

Satyajit Das*†, Kevin J. M. Martin*, Philippe Coussy*, Davide Rossi†, and
Luca Benini† ‡

*Université de Bretagne-Sud, France,
†University of Bologna, Italy

‡Integrated Systems Laboratory, ETH Zurich, Switzerland,

ASP-DAC January 17, 2017

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

2

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

3

Introduction

 Coarse-grain reconfigurable architecture
(CGRA)
 Processing Elements (PEs) arranged as 2D structure
 PE reconfiguration through Instruction register

4

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE

ALU RF

Reg

Read from neighbors

Write to neighbors

MUXMUX

In
st

ru
ct

io
n

R
eg

is
te

r

Introduction

 CGRAs are coupled to a general purpose
processor, where the processor executes the
control parts and delegates data-flow parts to the
CGRA
 Communication overhead + memory operation overhead

not suitable for low power solutions
 Existing CGRAs mostly rely on partial and full

predication techniques to support conditional
branches
 Increased number of operations and performance decay

lead to higher energy consumption

5

Background

 Control flow
 Loops and conditionals

 Solutions for loops : Software pipelining for
innermost loop only
 No hardware support necessary

 Solutions for conditionals : partial and full
predication
 Hardware support necessary for the predication

6

Background

 Partial predication
 Executes both (if and else) paths
 Chooses the correct result later by

using a predicated instruction
(conditional move)

 Full predication
 The operations that update the same

variable are mapped to the same PE
but at different times

 The correct value of the output will
be present in the PE after the
maximum time

7

if

else

Conditional select

if else

Higher energy consumption

Performance decay

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

8

Contribution

 Register allocation based approach to execute full
control flow (branches & loops) on CGRAs in an
ultra-low-power (ULP) environment,
 Helps mapping of any depth of loops and conditionals
 Assists execution of kernels completely releasing the

host processor from performing outer loops control
 Addresses standalone execution of all the levels of the

loops, and conditionals
 CGRA architectural template targeted to execute

full kernels in ultra low power (ULP) environment,
supporting execution of jump and conditional jump
instructions

9

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

10

Problem formulation

11

X1 = 10;
X2 = 20;
X3 = 500;
X4 = 30;
X5 = 50
for(i = 0; i < q; i++)
{
 a = m[i] * X1;
 b = n[i] * X2;
 c = b + a;
 if(c < X3)

p[i] = c * X4;
 else

p[i] = c * X5;
}

BB_1
X1 = 10; X2 = 20;
X3 = 500; X4 = 30;
X5 = 50; i = 0;

BB_2
i < q;

BB_7
i ++;

BB_3
a = m[i] * X1;
b = n[i] * X2;
c = b + a;

BB_4
c < X3;

BB_5
p[i] = c * X4;

BB_6
p[i] = c * X5;

jmp

cjmp

jmp

jmp jmpjmp

BB_8
Outside
the for

loop
cjmp

(a) Sample program

(b) Corresponding CDFG

Problem formulation

 Basic blocks => DFG
 Control flow => jmp, cjmp
 Execution of basic blocks

mutually exclusive => discrete
mapping of basic blocks

 Individual mapping of basic
blocks creates placement
constraints
 Ex: placement of c (reg_c) in

BB_3, BB_4, BB_5, BB_6 must be
same

 Variables with such placement
constraints => Symbol variables

12

BB_1
X1 = 10; X2 = 20;
X3 = 500; X4 = 30;
X5 = 50; i = 0;

BB_2
i < q;

BB_7
i ++;

BB_3
a = m[i] * X1;
b = n[i] * X2;
c = b + a;

BB_4
c < X3;

BB_5
p[i] = c * X4;

BB_6
p[i] = c * X5;

jmp

cjmp

jmp

jmp jmpjmp

BB_8
Outside
the for

loop
cjmp

Problem formulation
 Behavioral classification of the

placement constraints
 Target location constraints (TLC)

 Ex: For a mapping order of
BB_1, BB_3: reg_X1, and
reg_X2 in BB_3 is TLC

 Reserved location constraints (RLC)
 Ex: For a mapping order of

BB_1, BB_3: reg_X3, reg_X4,
reg_X5 in BB_3 are RLCs

13

BB_1
X1 = 10; X2 = 20;
X3 = 500; X4 = 30;
X5 = 50; i = 0;

BB_2
i < q;

BB_7
i ++;

BB_3
a = m[i] * X1;
b = n[i] * X2;
c = b + a;

BB_4
c < X3;

BB_5
p[i] = c * X4;

BB_6
p[i] = c * X5;

jmp

cjmp

jmp

jmp jmpjmp

BB_8
Outside
the for

loop
cjmp

Problem formulation

 Increase in the number of TLCs and RLCs induce
complexity in mapping

 The number of TLCs and RLCs varies on traversal
of the CDFG

 Basic solution: systematic load-store based
approach
 Introducing memory operation nullifies the placement

problem
 Not an energy efficient solutions (increased memory

operation)

14

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

15

Proposed Method

 Register allocation based approach
 Except array inputs and outputs, all the scalar variables

are placed in the register files of the PEs

16

Proposed Method

 Register allocation based approach
 Except array inputs and outputs, all the scalar variables

are placed in the register files of the PEs

17

X1 = 10;
X2 = 20;
X3 = 500;
X4 = 30;
X5 = 50
for(i = 0; i < q; i++)
{
 a = m[i] * X1;
 b = n[i] * X2;
 c = b + a;
 if(c < X3)

p[i] = c * X4;
 else

p[i] = c * X5;
}

 In the sample program m, n
are input arrays, and p is
output array
 Input arrays are loaded from

memory
 Output arrays are stored in

memory
 All the other variables are

placed in register files (no
memory operations)

Proposed Method

 Register allocation based approach
 Except array inputs and outputs, all the scalar variables

are placed in the register files of the PEs
 Modified Forward traversal of CDFG to minimize the

number of TLC and RLCs
 Forward breadth first traversal helps the basic blocks with

greater number of symbol nodes are mapped earlier =>
reduction in the number of constraints.

18

Proposed Method

 Register allocation based approach
 Except array inputs and outputs, all the scalar variables

are placed in the register files of the PEs
 Modified Forward traversal of CDFG to minimize the

number of TLC and RLCs
 Forward breadth first traversal helps the basic blocks with

greater number of symbol nodes are mapped earlier =>
reduction in the number of constraints.

 Introduce routing to respect TLC or RLC, while mapping
the basic blocks

19

Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while
mapping the basic blocks

20

BB_3

Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while
mapping the basic blocks

21

BB_3

TLC

RLC

Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while
mapping the basic blocks

22

BB_3

TLC

RLC

Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while
mapping the basic blocks

23

BB_3

TLC

RLC

Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while
mapping the basic blocks

24

BB_3

TLC

RLC

Proposed Method
 Register allocation based approach

 Introduce routing to respect TLC or RLC, while
mapping the basic blocks

25

BB_3

TLC

RLC

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

26

Proposed architecture: the grid

 4x4 PE array
 Each PE is connected with

4 neighbours
 Supports MIMD execution

model

27

PE 1 PE 2 PE 3 PE 4

PE 5 PE 6 PE 7 PE 8

PE 9 PE 10 PE 11 PE 12

PE 13 PE 14 PE 15 PE 16

4x4 CGRA with mesh torus

interconnect network

Proposed architecture: the PE

 32 bit ALU, shifter
and 16x16 bit
multiplier

 Optional load-store
unit (LSU)

 Regular register file
(RRF) and output
register (OR) to store
temporary variables

 Constant register file
(CRF) for constants

 Controller for
selecting the address
of next instruction

28

Proposed architecture: the PE
 Cond Register is

one bit register,
contains:
 0 => true conditions
 1 => false conditions

 The boolean OR of
all the control bits
from all the PEs
gives the indication
of false condition
execution
 In next cycle, offset

address of the basic
block from false path
is fetched.

 Stall signals indicate
memory access
congestions

29

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

30

Experimental results

 Experimental setup
 Fully automated mapping through a software tool

implemented by using Java and Eclipse Modeling
Framework (EMF). GCC 4.8 is used to generate CDFGs
from applications described in C language

 Performance comparison of the proposed register based
approach and the basic systematic load-store based
approach with respect to CPU
 A cycle accurate model of the CGRA architecture is

implemented in C++
 OR1K is the chosen CPU. Instruction set simulations are

done with the toolchain provided by OVPsim

31

Experimental results
 Performance comparison of the proposed register based approach and

the basic systematic load-store based approach in a CGRA with infinite
memory bandwidth with respect to CPU

32

Memory Access

Experimental results
 The speed-up decreases with the compilation option

 very aggressive optimizations on loops are performed on the cpu
with higher optimization options.

33

Memory Access

Experimental results
 Performance comparison of the proposed register based approach and

the basic systematic load-store based approach in a CGRA with limited
bandwidth (top row LSU) with respect to CPU

34

Memory Access

Experimental results
 Register based approach performed best all the time with an

average speed up of 21x compared to that of CPU

35

Memory Access

Experimental results

 Area and energy consumption comparisons
 Post synthesis implementation of CGRA and CPU in

STMicroelectronics 28nm UTBB FD-SOI technology.
 Synopsys Design Compiler => synthesis, and

PrimePower => power analysis
 @ 0.6V supply voltage at the temperature of 25°C.

 In this operating point, the processor can achieve 45 MHz,
with a power density of 3.54 W/MHz, while a 4x4 CGRA
achieves 100 MHz and a power density of 1.78 W/MHz

36

Experimental results

 Area comparison of different size of CGRA with
CPU
 4x4 CGRA is used for our experiments, which comes

with an 2.7x area overhead compared to CPU

37

CPU
Combinational
(%)

Sequential
(%)

Total
overhead
compared
to CPU

CGRA 2x2 56.47 43.53 0.8x
CGRA 3x3 52.07 47.93 1.6x
CGRA 4x4 49.62 50.38 2.7x

Experimental results

 Energy consumption comparison for several kernel
execution in a 4x4 CGRA and a CPU
 An average of 50x gain is achieved in CGRA compared

to that of CPU

38

Opt -O0 opt -O1 opt -O2 opt -O3

kernels

CGRA
(register
based)

CGRA (register
based)

CGRA (register
based)

CGRA (register
based) CPU

FFT 238.86x 28.05x 32.33x 32.33x 1
Convolution 11.54x 4.73x 3.93x 3.93x 1
Non_sep_filt
er 42.34x 6.96x 15.47x 15.6x 1
FIR 13.18x 4.04x 3.18x 3.18x 1
Matrix_mul 11x 4x 3x 3x 1
Sep_filter 32.74x 5.59x 10.96x 10.97x 1
Masque5x5 3.33x 2x 2x 2x 1

Experimental results

 Energy consumption (µJ) for several kernel
execution using register based approach and the
state of the art predication techniques
 an average of 1.44x and 1.6x energy improvement is

achieved compared to partial and full predication
respectively

39

Gain compared to
Kernels Partial pred Full pred
FFT 2.43x 2.71x
Convolution 1.11x 1.17x
Non_sep_filter 1.39x 1.47x
FIR 1.26x 1.32x
Matrix_mul 1.5x 2x
Sep_filter 1.29x 1.45x
Masque5x5 1x 1.33x

Outline

 Introduction & Background
 Contribution

 Problem formulation
 Proposed method
 Proposed architecture

 Experimental results
 Conclusion

40

Conclusion

 CGRA architecture and mapping approach is
presented to implement full control flow onto a
CGRA in an ultra-low-power environment

 The proposed approach overcomes limitations and
inefficiencies of state of the art predications
methods, achieving 1.44x and 1.6x energy gain
over partial and full predication techniques
respectively

 The proposed approach achieves average speed-
up of 50x and an energy improvement of 21x with
respect to an embedded CPU with an area
overhead of 2.7x

41

THANK YOU

42

References

 K. Han, J. Ahn, and K. Choi. Power-efficient
predication techniques for acceleration of control
flow execution on cgra. ACM Trans. Archit. Code
Optim., 10(2):8:1–8:25, May 2013.

 K. Han, J. K. Paek, and K. Choi. Acceleration of
control flow on cgra using advanced predicated
execution. In Field-Programmable Technology
(FPT), 2010 International Conference on, pages
429–432, Dec 2010..

43

	Efficient Mapping of CDFG onto Coarse-Grained Reconfigurable Array Architectures
	Outline
	Outline
	Introduction
	Introduction
	Background
	Background
	Outline
	Contribution
	Outline
	Problem formulation
	Problem formulation
	Problem formulation
	Problem formulation
	Outline
	Proposed Method
	Proposed Method
	Proposed Method
	Proposed Method
	Proposed Method
	Proposed Method
	Proposed Method
	Proposed Method
	Proposed Method
	Proposed Method
	Outline
	Proposed architecture: the grid
	Proposed architecture: the PE
	Proposed architecture: the PE
	Outline
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Outline
	Conclusion
	THANK YOU
	References

