On Efficient Message Passing in Energy Harvesting Based Distributed System

Ye Tian, Qiang Xu and Jason Xue Presenter: Ye Tian

<u>**CU</u>hk <u>RE</u>liable computing laboratory (CURE**) Department of Computer Science and Engineering The Chinese University of Hong Kong, Hong Kong</u>

Energy Harvesting Based Distributed System

Previous Works

Wireless radio is one of the highest power consuming components

- Node-Level: Offline Optimization Policy
 - Assume energy profile is known and adjust transmission rate based on packet, ambient energy and/or channel state information
- Network-Level: Harvesting-Aware Routing
 - Routing Protocols: route selection
 - Clustering: route packets to cluster heads, cluster formation and cluster head selection

Motivation

- Energy waste due to retransmission
 - inadequate and unstable input power
 - frequent power off of energy harvesting device
 - frequent failure of transmission
- Previous works
 - Assume that energy harvesting times and harvested energy amounts are known offline
 - Have not discussed transmission failure due to inadequate energy of the sender or the receiver
- Our method: predict and improve success rate of transmission

Process of Reliable Message Passing

- Loss of message

 Feedback (similar to TCP)
- Energy waste due to retransimission
 - Predict probability of success first

Prediction of Successful Transmission

- Conditions for successful transmission
- Steps of prediction
- Probablity prediction of conditions
- Parameters for prediction strategy

Conditions for Successful Transmission

- Conditions for successful message passing
 - The sender sends message successfully
 - The receiver receives message and sends feedback successfully
 - The sender receives feedback successfully
- Success of message passing is equivalent to satisfaction of all the three conditions
- When one of the device is with stable power supply, the only difference lies in prediction

Steps of Prediction

Steps of prediction of successful message passing

- Calculate the probability $(P_1, P_2 \text{ and } P_3)$ that three conditions are satisfied respectively
- Estimate the weight of every condition (α₁, α₂ and α₃)
- Calculate the probability of successful transmission $P = P_1^{\alpha_1} \times P_2^{\alpha_2} \times P_3^{\alpha_3}$

Assumptions

- Communication channel is always perfect
- Work status of node is quasi-periodic
 - Work status: on and off
 - Quasi-periodic: length and duty cycling of the work period is approximately periodic
 - Quasi-periodic input power (motion, vibration)
 - Adaptive control of duty cycling in energy harvesting device, variance of duty cycling less than 20%

Parameters

- Delay: d_{12} , d_{21} (known)
- Message: l, l_f (known)
- Node state: $T_1, T_{1,on}, T_2, T_{2,on}, t_1, t_2$
 - $-T_1, T_{1,on}$ (update online from latest N periods, average)
 - $-t_1$ (known)
 - T_2 , $T_{2,on}$, t_2 (received message)

 $t_2 = (t_2 + d_{21} + t_{passed})\% T_2$

Message is from node 1 to node 2

Formulation of 3 conditions

The node should stay on when sending or receiving

- Condition 1: node 1 sends $t_1 \le T_{1,on} - l$
- Condition 2: node 2 receives and sends feedback

 $(t_2+l+d_{12})\% T_2 \le T_{2,on}-l-l_f$

 Condition 3: node 1 receives feedback

 $\begin{aligned} &(t_1 + l + d_{12} + l + l_f + d_{21})\% \\ &T_1 \leq T_{1,on} - l_f \end{aligned}$

Probability calculation of each condition

(take condition 2 as an example)

Condition 2: the receiver receives message and sends feedback successfully

(t_2+l+d_{12}) % $T_2 \le T_{2,on} - l - l_f \Leftrightarrow t_2 + 2l + l_f + d_{12} \le T_{2,on} + nT_2$

L.H.S are all fixed values. Average value and variance of T on R.H.S are calculated with latest N periods. We can use certain distribution to estimate distribution of R.H.S and then calculate the probability that RHS is larger than LHS.

Weights of conditions

- Conditions have different weights (α_1 , α_2 and α_3) according to which one fits the actual situation better
- Condition 2 predicts status of other nodes based on last message from receiver, t_2 , $T_{2,on}$, T_2 may change a lot after long time, the weight α_2 should decrease with time
 - One simple method: linear model

$$\alpha_2 = 1 - \omega \times \frac{t_{passed}}{t_{ref}}$$

where ω and t_{ref} are user defined parameters

Parameters for Prediction Strategy

- Probability threshold
 - Decide effect of prediction
 - Based on the quality of prediction
- Interval of prediction (time interval between attemps of prediction)
 - Decide overhead of prediction
 - Based on the period of node cycle
- Number of latest cycles used to calculate T

Experimental Results

Experimental setup

- Evaluation of efficient message passing method: success rate and energy consumption with and without prediction (mean duty cycle 15% to 90%, variance up to 50%)
 - Previous works on adaptive control of duty cycling for energy harvesting devices: mean 15% to 40%, variance less than 20%
 - Wide range of power consumption of wireless node
- Analysis for parameters of prediction strategy
 - Probability threshold and interval of prediction

Experiment Results

Evaluation of efficient message passing method

(a) Comparison of Success Rate

(b) Comparison of Energy Consumption

Comparison between Message Passing with and without Prediction (Variance: 10%)

Experiment Results

Evaluation of efficient message passing method

Effect of Duty Cycle Variance on Efficient Message Passing (Duty Cycle: 30%)

Experiment Results

Analysis for parameters of prediction strategy

Parameter Analysis for Prediction Strategy (Duty Cycle: 30%, Variance: 10%)

Question Time

Thanks for Your Attention!

