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The Bird’s Eye View

Uses
Reduce the complexity of an available multilevel network.
Construct a multilevel network from a two-level representation of a
Boolean function.

Two-level representation
or Multilevel network Extraction Improved

Multilevel network

Motivation
Original fast-extract (fx) is old.
Since its appearance:

the transistor count has increased by three orders of magnitude
the price of memory decreased by four orders of magnitude
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Boolean functions - Two-level Representation

Any Boolean function can be represented as a truth table.

Truth table
x1 x2 x3 F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
minterms

On-set
x1 x2 x3 y1
0 - 1 1
0 1 - 1
- 1 1 1

Off-set
x1 x2 x3 y1
- 0 0 0
1 0 - 0
1 - 0 0
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Boolean functions - Two-level Representation

Any Boolean function can be represented as a two-level sum of
products (SOP), which is a Boolean OR of implicants (i.e.
S = c1 + c + · · ·+ cn)
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Boolean Networks

Primary Inputs Primary Outputs
a

b

c

d

e

x

y

z

F = (a + b) · c · d + e

G = (a + b) · c · e

H = c · d · e
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Optimization of Boolean Networks
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Optimization of Boolean Networks - Overview

The Goal
Obtain an equivalent representation of a Boolean network optimal with
respect to some design constraints.

Typical constraints:
Area
Delay

In multilevel logic minimal-area implementations generally don’t
correspond to minimal delay ones and vice versa.

Truly multiple-objective optimization problem.
Exact methods are, generally, impractical even for a medium-size
network.
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Optimization of Boolean Networks - Heuristic Methods

Use of heuristic methods which improve the network through logic
transformations that preserve the input/output network behavior

All modern synthesis systems are transformation based.
Logic transformations

Most are defined so that network equivalence is guaranteed and
does not need to be checked.
Virtually impossible to claim that all equivalent networks can be
explored by applying some sequence of transformations.
Local optimums

Five key transformations: decompositions, extraction, factoring,
substitution, and elimination.
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Extraction

Definition
Extraction is the process of identifying common sub-expressions and using
them to create new intermediate functions, which are associated with new
variables, and re-expressing the original functions in term of the original as
well as the new variables

a

b

c

d

e

x

y

z

F = abe + ace + d

G = abd + acd

H = ce
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well as the new variables

a

b

c

d

e

x

y

z

W = ab + ac F = We + d

G = Wd

H = ce
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Algebraic Division

Algebraic: Treats Boolean functions as polynomials. enables the
optimization of logic networks through the use of general
properties of polynomial algebra.

a

b

c

d

e

x

y

z

W = ab + ac F = We + d

G = Wd

H = ce

ab + ac is said to be a kernel of F
and G.
In F , e is the co-kernel of ab + ac.
In G, d is the co-kernel of ab + ac.

Fundamental Theorem
Given two expressions f and g, and their
respective set of kernels K (f ) and K (g), f
and g have a multiple-cube common
divisor if and only if there exists kernels
kf ∈ K (f ) and kg ∈ K (g) such that kf ∩ kg
has two or more terms, i.e kf ∩ kg is not a
single cube.
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Extraction

1 Enumerate all kernels from all functions.
2 Choose a “good” kernel intersection.
3 Create a new node with this as a function.
4 Substitute this new node in the functions that have it as function.
5 Repeat 1, 2, 3 and 4 until no more “good” kernel intersection is

found.
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2 Choose a “good” kernel intersection.
3 Create a new node with this as a function.
4 Substitute this new node in the functions that have it as function.
5 Repeat 1, 2, 3 and 4 until no more “good” kernel intersection is

found.

Re-computation of kernels after every substitution (expensive).
Some function have a very large set of kernels.
Cannot identify if a kernel can be as complemented node.
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Fast-extract

Compute a subset of kernels.
Double-cube kernel extraction [Rajski et al ‘90] (fast-extract)

single-cube double-literal kernels.
double-cube divisors.

Properties of fast extract
Single- and double-cube divisors are considered concurrently.
Handle divisor and complemented divisor simultaneously.
Double-cube divisors are found using a pairwise comparison
between cubes of the same Boolean function.
The weight of each divisor is a function of the number of saved
literals and its logic level.

Schmitt, Bruno (INF-UFRGS) FXCH ASP-DAC 2017 14 / 31



Fast-extract

Compute a subset of kernels.
Double-cube kernel extraction [Rajski et al ‘90] (fast-extract)

single-cube double-literal kernels.
double-cube divisors.

Properties of fast extract
Single- and double-cube divisors are considered concurrently.
Handle divisor and complemented divisor simultaneously.
Double-cube divisors are found using a pairwise comparison
between cubes of the same Boolean function.
The weight of each divisor is a function of the number of saved
literals and its logic level.

Schmitt, Bruno (INF-UFRGS) FXCH ASP-DAC 2017 14 / 31



Fast-extract Algorithm

1 Generate all 2-literal kernels and stores it’s complemented form.
2 Generate and store all 2-cube kernels.
3 Choose the best divisor and extract it.
4 Update the set of divisors.
5 Iterate extraction of divisors until no more improvement.
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Differences

FX
Divisors can be any function
containing up to N literals - where
N has the default value of 4, but
can be defined by the user.
Can’t handle “degenerate”
divisors.
Common divisors are found by
enumerating cube pairs.
Doesn’t keep track of the relation
between divisors and cube pairs.

FXCH
Restricts divisor to a small set of
functions (1, NAND, XOR, MUX).
Can handle “degenerate”
divisors.
Common divisors are found with
the help of a sub-cube hash table.
Keep track of the relation
between divisors and cube pairs.
Uses a multiple-output
representation for cubes.

Degenerate divisors
There is a set of divisors that can deteriorate the outcome of extraction if not
properly handled:

The constant-1 divisor: (x i + xi ) (means SCC)
Handling xi + x ixk , xixk + xk and xi + xk as three different divisors, while
in fact they are the same divisor xi + xk
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Creating single-cube divisors
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Creating single-cube divisors

f = x1x2e1e2 + x3e1e2 + x1x2t1t2t3 + x3t1t2t3 + x1x3v1v2 + x2x3v1v2

x1 x2 e1 e2
x3 e1 e2
x1 x2 t1 t1 t3
x3 t1 t2 t3
x1 x3 v1 v2
x2 x3 v1 v2

Both FX and FXCH use the same technique to
create single cube divisors

1 They select one cube at a time.
2 For the selected cube, literals pairs are

enumerated. For each pair of literals a divisor
is created.

3 Each created divisor is added to the divisors
hash table and has its weight calculated.

x1x2
x1e1
x1e2
x2e1
x2e2
e1e2
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Creating single-cube divisors
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x2 x3 v1 v2

Both FX and FXCH use the same technique to
create single cube divisors

1 They select one cube at a time.
2 For the selected cube, literals pairs are

enumerated. For each pair of literals a divisor
is created.

3 Each created divisor is added to the divisors
hash table and has its weight calculated.

Divisors:

x1x2
x1e1
x1e2
x2e1
x2e2
e1e2

Actually, we store the
negation of the found
single-cube divisors,
ie:

x1x2 = x1 + x2
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Creating double-cube divisors

The FX way
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Creating double-cube divisors - The FX way

f = x1x2e1e2 + x3e1e2 + x1x2t1t2t3 + x3t1t2t3 + x1x3v1v2 + x2x3v1v2

x1 x2 e1 e2
x3 e1 e2
x1 x2 t1 t1 t3
x3 t1 t2 t3
x1 x3 v1 v2
x2 x3 v1 v2

Find common divisors by pairwise
comparison of cubes.

For each cube pair: literals are compared.
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Find common divisors by pairwise
comparison of cubes.
For each cube pair: literals are compared.

Divisor:

x1x2 + x3

x1 + x2

Here is the reason why, when creating
single cube divisors, we stored the
negation of x1x2. (Normalization)
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FX - Result

f = x1x2e1e2 + x3e1e2 + x1x2t1t2t3 + x3t1t2t3 + x1x3v1v2 + x2x3v1v2

The first picked divisor is x1x2 + x3 which lead to:

f = Ge1e2 + Gt1t2t3 + x1x3v1v2 + x2x3v1v2

G = x1x2 + x3

Followed by: x1x2 (x1 + x2)

f = Ge1e2 + Gt1t2t3 + Hx3v1v2

G = H + x3

H = x1x2

Followed by: Hx3 (H + x3)
f = Ge1e2 + Gt1t2t3 + K v1v2

G = K
H = x1x2

K = Hx3
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Creating double-cube divisors

The FXCH way
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Creating double-cube divisors - The FXCH way

f = x1x2e1e2 + x3e1e2 + x1x2t1t2t3 + x3t1t2t3 + x1x3v1v2 + x2x3v1v2

x1 x2 e1 e2
x3 e1 e2
x1 x2 t1 t1 t3
x3 t1 t2 t3
x1 x3 v1 v2
x2 x3 v1 v2

Find common divisors with the help of a sub-cube
hash table.

For each cube FXCH will:

Add the cube itself to a hash table.
Generated all sub-cubes by removing 1
and 2 literals, and add them to the same
hash table.
Imagining a perfect hashing, a hit
means that a common divisor exists.
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Add the cube itself to a hash table.
Generated all sub-cubes by removing 1
and 2 literals, and add them to the same
hash table.
Imagining a perfect hashing, a hit
means that a common divisor exists.

Indeed, it found the divisor:
x1x2 + x1

Which is created using the removed literals of
each cube.
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For each cube FXCH will:
Add the cube itself to a hash table.
Generated all sub-cubes by removing 1
and 2 literals, and add them to the same
hash table.
Imagining a perfect hashing, a hit
means that a common divisor exists.

Indeed, it found the divisor:
x1x2 + x1

Which is created using the removed literals of
each cube. But FXCH limits divisors to a small
set of functions (1, NAND, XOR, MUX)!
So, this divisor is discarded.
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FXCH - Result

f = x1x2e1e2 + x3e1e2 + x1x2t1t2t3 + x3t1t2t3 + x1x3v1v2 + x2x3v1v2

The first picked divisor is x1x2 (x1 + x2) which lead to:

f = Ge1e2 + x3e1e2 + Gt1t2t3 + x3t1t2t3 + Gx3v1v2

G = x1x2

Followed by: Gx3 (G + x3)
f = He1e2 + Ht1t2t3 + Hv1v2

G = x1x2

H = Gx3

Schmitt, Bruno (INF-UFRGS) FXCH ASP-DAC 2017 25 / 31



FXCH - Result

f = x1x2e1e2 + x3e1e2 + x1x2t1t2t3 + x3t1t2t3 + x1x3v1v2 + x2x3v1v2

The first picked divisor is x1x2 (x1 + x2) which lead to:

f = Ge1e2 + x3e1e2 + Gt1t2t3 + x3t1t2t3 + Gx3v1v2

G = x1x2

Followed by: Gx3 (G + x3)
f = He1e2 + Ht1t2t3 + Hv1v2

G = x1x2

H = Gx3

Schmitt, Bruno (INF-UFRGS) FXCH ASP-DAC 2017 25 / 31



FXCH - Limiting divisor functions

The complete set of possible double-cube divisors with complements
is summarized in Theorem 1 in [Rajski et al ‘92]. The set implies that
using canonical basis NAND, XOR (⊕), and MUX as divisor functions
imposes a duality property in such divisors, meaning that the
complement of a divisor is also a divisor.

Observe that this limitation forbids factors of the form x1x2 + x3,
because its complement function x1x3 + x2x3 is not a kernel, hence
can not be used by algebraic extraction.

This means that when FX chooses to extract x1x2 + x3, it does not
account for its complement. This affects the relative balance of
aggregated scores and leads to an inaccuracy of potential savings,
which is likely to be more pronounced in larger problems.
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which is likely to be more pronounced in larger problems.
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FXCH - Cube Grouping

x1 x2 x3 y1 y2
1 1 - 1 0
- 1 1 1 0
0 0 0 1 1
0 1 1 1 1
1 - 1 0 1
1 1 0 0 1

y1 x1 x2
y1 x2 x3
y1 x1 x2 x3
y1 x1 x2 x3
y2 x1 x2 x3
y2 x1 x2 x3
y2 x1 x3
y2 x1 x2 x3
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Results - Cube Grouping

Table: The impact of using cube grouping

Run-time (s) Memory (Mb)
w/ CG w/o CG w/ CG w/o CG

37/143 2.95 14.47 113.36 673.14
38/67 1.16 2.75 58.64 265.11

128/43 1.90 4.73 105.48 430.69
128/53 1.63 3.89 102.21 421.89
128/55 2.03 6.44 104.95 523.19
128/69 2.72 14.64 106.84 556.56
128/94 4.56 29.38 120.44 1013.58

128/104 3.98 24.25 120.61 915.76
128/160 8.35 56.71 226.32 1882.85

ratios: 0.19 1 0.16 1
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Results - EPFL Multiple-output PLA Behnchmakrs

Table: Logic synthesis results: comparison of fxch, fx and jee

fxch in ABC fx in ABC jee factoring

Design t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl

37/143 2.95 113 3835 22 18.18 11 4695 24 4.3 37 3587 24

38/67 1.16 59 3438 19 2.14 7 3727 18 2.0 25 3366 20

128/43 1.90 105 3051 18 2.43 9 3702 18 2.3 22 3191 18

128/53 1.63 102 2708 18 2.09 9 3261 19 2.0 23 2944 19

128/55 2.03 105 3079 18 2.46 10 3905 18 2.1 22 3069 20

128/69 2.72 107 3415 19 4.60 14 4295 20 2.7 28 3326 20

128/94 4.56 120 5140 21 9.50 20 6271 22 6.3 46 5266 24

128/104 3.98 121 4916 20 7.61 17 5853 21 5.7 44 4926 23

128/160 8.35 226 7358 23 21.02 30 8889 24 15.5 76 7268 24

ratios: 0.42 8.33 0.83 0.97 1 1 1 1 0.61 2.54 0.83 1.04
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Results - Primes (Scalability)

Table: Results of the synthesis of the primality testing circuits.

fxch in ABC fx in ABC jee factoring

#inputs t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl

11 0.02 7 455 13 0.03 2 471 13 - 3 492 13

12 0.04 13 739 14 0.13 2 771 14 0.1 5 825 14

13 0.10 25 1355 15 0.53 2 1440 15 0.3 9 1419 15

14 0.25 50 2046 16 2.07 3 2401 16 1.4 20 2287 16

15 0.62 100 3670 17 7.99 5 4174 17 8.5 58 3989 17

16 1.55 202 6289 18 30.87 11 7448 18 41.2 151 6491 18

17 3.91 407 11413 19 129 23 11650 19 66.7 157 12096 19

18 12.97 827 17260 20 507 72 22158 20 167.8 169 18144 19

ratios: 0.03 13.6 0.86 1 1 1 1 1 0.42 4.8 0.91 1
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