Fast Extract with Cube Hashing (FXCH)

$\begin{array}{llll}\text { B. Schmitt } & \text { A. Mishchenko } & \text { V. } \text { Kravets }^{3} \quad \text { R. Brayton }\end{array}$ A. Reis ${ }^{1}$

${ }^{1}$ Institute of Informatics
Federal University of Rio Grande do Sul (UFRGS)

${ }^{2}$ Department of EECS
University of California, Berkeley
${ }^{3}$ IBM Thomas J. Watson Research Center
Yorktown Heights, NY

ASP-DAC, January 2017

Table of Contents

(1) Motivation
(2) Background
(3) FX vs FXCH

- Creating single-cube divisors
- Creating double-cube divisors
(4) Results

Table of Contents

(1) Motivation

(2) Background

(3) FX vs FXCH

- Creating single-cube divisors
- Creating double-cube divisors

4 Results

The Bird's Eye View

Uses

- Reduce the complexity of an available multilevel network.
- Construct a multilevel network from a two-level representation of a Boolean function.

The Bird's Eye View

Uses

- Reduce the complexity of an available multilevel network.
- Construct a multilevel network from a two-level representation of a Boolean function.

Two-level representation or Multilevel network Extraction Improved Multilevel network

The Bird's Eye View

Uses

- Reduce the complexity of an available multilevel network.
- Construct a multilevel network from a two-level representation of a Boolean function.

Two-level representation or Multilevel network

Extraction

Improved Multilevel network

Motivation

- Original fast-extract $(f x)$ is old.
- Since its appearance:
- the transistor count has increased by three orders of magnitude
- the price of memory decreased by four orders of magnitude

Table of Contents

(1) Motivation

(2) Background
(3) FX vs FXCH

- Creating single-cube divisors
- Creating double-cube divisors
(4) Results

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a truth table.

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a truth table.

Truth table

x_{1}	x_{2}	x_{3}	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a truth table.

Truth table				
x_{1}	x_{2}	x_{3}	F	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	
minterms				

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a truth table.

Truth table				
x_{1}	x_{2}	x_{3}	F	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	
minterms				

On-set

x_{1}	x_{2}	x_{3}	y_{1}
0	-	1	1
0	1	-	1
-	1	1	1

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a truth table.

Truth table				
x_{1}	x_{2}	x_{3}	F	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	
minterms				

On-set

x_{1}	x_{2}	x_{3}	y_{1}
0	-	1	1
0	1	-	1
-	1	1	1

Off-set

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a truth table.

Truth table			
x_{1}	x_{2}	x_{3}	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
minterms			

On-set

x_{1}	x_{2}	x_{3}	y_{1}
0	-	1	1
0	1	-	1
-	1	1	1

Off-set			
x_{1}	x_{2}	x_{3}	y_{1}
-	0	0	0
1	0	-	0
1	-	0	0

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a two-level sum of products (SOP), which is a Boolean OR of implicants (i.e.
$\left.S=c_{1}+c+\cdots+c_{n}\right)$

Truth table

x_{1}	x_{2}	x_{3}	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
minterms			

On-set

x_{1}	x_{2}	x_{3}	y_{1}
0	-	1	1
0	1	-	1
-	1	1	1

Off-set

x_{1}	x_{2}	x_{3}	y_{1}
-	0	0	0
1	0	-	0
1	-	0	0

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a two-level sum of products (SOP), which is a Boolean OR of implicants (i.e.
$\left.S=c_{1}+c+\cdots+c_{n}\right)$

Truth table

x_{1}	x_{2}	x_{3}	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
minterms			

On-set

x_{1}	x_{2}	x_{3}	y_{1}
0	-	1	1
0	1	-	1
-	1	1	1

Off-set

x_{1}	x_{2}	x_{3}	y_{1}
-	0	0	0
1	0	-	0
1	-	0	0

Boolean functions - Two-level Representation

- Any Boolean function can be represented as a two-level sum of products (SOP), which is a Boolean OR of implicants (i.e.
$\left.S=c_{1}+c+\cdots+c_{n}\right)$

Truth table

x_{1}	x_{2}	x_{3}	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
minterms			

On-set

x_{1}	x_{2}	x_{3}	y_{1}
0	-	1	1
0	1	-	1
-	1	1	1

Off-set

x_{1}	x_{2}	x_{3}	y_{1}
-	0	0	0
1	0	-	0
1	-	0	0

Boolean Networks

Primary Inputs
Primary Outputs

Optimization of Boolean Networks

Optimization of Boolean Networks - Overview

The Goal

Obtain an equivalent representation of a Boolean network optimal with respect to some design constraints.

Optimization of Boolean Networks - Overview

The Goal

Obtain an equivalent representation of a Boolean network optimal with respect to some design constraints.

- Typical constraints:
- Area
- Delay

Optimization of Boolean Networks - Overview

The Goal

Obtain an equivalent representation of a Boolean network optimal with respect to some design constraints.

- Typical constraints:
- Area
- Delay

In multilevel logic minimal-area implementations generally don't correspond to minimal delay ones and vice versa.

Optimization of Boolean Networks - Overview

The Goal

Obtain an equivalent representation of a Boolean network optimal with respect to some design constraints.

- Typical constraints:
- Area
- Delay

In multilevel logic minimal-area implementations generally don't correspond to minimal delay ones and vice versa.

- Truly multiple-objective optimization problem.
- Exact methods are, generally, impractical even for a medium-size network.

Optimization of Boolean Networks - Heuristic Methods

Use of heuristic methods which improve the network through logic transformations that preserve the input/output network behavior

Optimization of Boolean Networks - Heuristic Methods

Use of heuristic methods which improve the network through logic transformations that preserve the input/output network behavior

- All modern synthesis systems are transformation based.
- Logic transformations
- Most are defined so that network equivalence is guaranteed and does not need to be checked.
- Virtually impossible to claim that all equivalent networks can be explored by applying some sequence of transformations.
- Local optimums
- Five key transformations: decompositions, extraction, factoring, substitution, and elimination.

Extraction

Definition

Extraction is the process of identifying common sub-expressions and using them to create new intermediate functions, which are associated with new variables, and re-expressing the original functions in term of the original as well as the new variables

Extraction

Definition

Extraction is the process of identifying common sub-expressions and using them to create new intermediate functions, which are associated with new variables, and re-expressing the original functions in term of the original as well as the new variables

Extraction

Definition

Extraction is the process of identifying common sub-expressions and using them to create new intermediate functions, which are associated with new variables, and re-expressing the original functions in term of the original as well as the new variables

Extraction

Definition

Extraction is the process of identifying common sub-expressions and using them to create new intermediate functions, which are associated with new variables, and re-expressing the original functions in term of the original as well as the new variables

Algebraic Division

- Algebraic: Treats Boolean functions as polynomials. enables the optimization of logic networks through the use of general properties of polynomial algebra.

- $\bar{a} b+a c$ is said to be a kernel of F and G.
- In F, e is the co-kernel of $\bar{a} b+a c$.
- In G, d is the co-kernel of $\bar{a} b+a c$.

Algebraic Division

- Algebraic: Treats Boolean functions as polynomials. enables the optimization of logic networks through the use of general properties of polynomial algebra.

- $\bar{a} b+a c$ is said to be a kernel of F and G.
- $\ln F, e$ is the co-kernel of $\bar{a} b+a c$.
- In G, d is the co-kernel of $\bar{a} b+a c$.

Fundamental Theorem

Given two expressions f and g, and their respective set of kernels $K(f)$ and $K(g), f$ and g have a multiple-cube common divisor if and only if there exists kernels $k_{f} \in K(f)$ and $k_{g} \in K(g)$ such that $k_{f} \cap k_{g}$ has two or more terms, i.e $k_{f} \cap k_{g}$ is not a single cube.

Extraction

(1) Enumerate all kernels from all functions.
(2) Choose a "good" kernel intersection.
(3) Create a new node with this as a function.
(4) Substitute this new node in the functions that have it as function.
(5) Repeat $1,2,3$ and 4 until no more "good" kernel intersection is found.

Extraction

(1) Enumerate all kernels from all functions.
(2) Choose a "good" kernel intersection.
(3) Create a new node with this as a function.
(9) Substitute this new node in the functions that have it as function.
(0) Repeat 1,2,3 and 4 until no more "good" kernel intersection is found.

- Re-computation of kernels after every substitution (expensive).
- Some function have a very large set of kernels.
- Cannot identify if a kernel can be as complemented node.

Fast-extract

Compute a subset of kernels.

- Double-cube kernel extraction [Rajski et al '90] (fast-extract)
- single-cube double-literal kernels.
- double-cube divisors.

Fast-extract

Compute a subset of kernels.

- Double-cube kernel extraction [Rajski et al '90] (fast-extract)
- single-cube double-literal kernels.
- double-cube divisors.

Properties of fast extract

- Single- and double-cube divisors are considered concurrently.
- Handle divisor and complemented divisor simultaneously.
- Double-cube divisors are found using a pairwise comparison between cubes of the same Boolean function.
- The weight of each divisor is a function of the number of saved literals and its logic level.

Fast-extract Algorithm

(1) Generate all 2-literal kernels and stores it's complemented form.
(2) Generate and store all 2-cube kernels.
(3) Choose the best divisor and extract it.
(4) Update the set of divisors.
(5) Iterate extraction of divisors until no more improvement.

Table of Contents

(1) Motivation

(2) Background
(3) FX vs FXCH

- Creating single-cube divisors
- Creating double-cube divisors

4 Results

Differences

FX

- Divisors can be any function containing up to N literals - where N has the default value of 4 , but can be defined by the user.
- Can't handle "degenerate" divisors.
- Common divisors are found by enumerating cube pairs.
- Doesn't keep track of the relation between divisors and cube pairs.

FXCH

- Restricts divisor to a small set of functions (1, NAND, XOR, MUX).
- Can handle "degenerate" divisors.
- Common divisors are found with the help of a sub-cube hash table.
- Keep track of the relation between divisors and cube pairs.
- Uses a multiple-output representation for cubes.

Degenerate divisors

There is a set of divisors that can deteriorate the outcome of extraction if not properly handled:

- The constant-1 divisor: $\left(\bar{x}_{i}+x_{i}\right)$ (means SCC)
- Handling $x_{i}+\bar{x}_{i} x_{k}, x_{i} \bar{x}_{k}+x_{k}$ and $x_{i}+x_{k}$ as three different divisors, while in fact they are the same divisor $x_{i}+x_{k}$

Creating single-cube divisors

Creating single-cube divisors

$f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
Both FX and FXCH use the same technique to create single cube divisors

x_{1}	χ_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	V_{2}	

Creating single-cube divisors

$f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	V_{2}	

Creating single-cube divisors

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.
(2) For the selected cube, literals pairs are enumerated. For each pair of literals a divisor is created.

Divisors:

- $x_{1} x_{2}$

Creating single-cube divisors

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.
(2) For the selected cube, literals pairs are enumerated. For each pair of literals a divisor is created.

Divisors:

- $x_{1} x_{2}$
- $x_{1} e_{1}$

Creating single-cube divisors

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.
(2) For the selected cube, literals pairs are enumerated. For each pair of literals a divisor is created.

Divisors:

- $x_{1} x_{2}$
- $x_{1} e_{1}$
- $x_{1} e_{2}$

Creating single-cube divisors

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.
(2) For the selected cube, literals pairs are enumerated. For each pair of literals a divisor is created.

Divisors:

- $x_{1} x_{2}$
- $x_{1} e_{1}$
- $x_{1} e_{2}$
- $x_{2} e_{1}$

Creating single-cube divisors

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.
(2) For the selected cube, literals pairs are enumerated. For each pair of literals a divisor is created.

Divisors:

- $x_{1} x_{2}$
- $x_{1} e_{1}$
- $x_{1} e_{2}$
- $x_{2} e_{1}$
- $X_{2} e_{2}$

Creating single-cube divisors

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.
(2) For the selected cube, literals pairs are enumerated. For each pair of literals a divisor is created.

Divisors:

- $x_{1} x_{2}$
- $x_{1} e_{1}$
- $x_{1} e_{2}$
- $x_{2} e_{1}$
- $x_{2} e_{2}$
- $e_{1} e_{2}$

Creating single-cube divisors

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Both FX and FXCH use the same technique to create single cube divisors
(1) They select one cube at a time.
(2) For the selected cube, literals pairs are enumerated. For each pair of literals a divisor is created.
(3) Each created divisor is added to the divisors hash table and has its weight calculated.

Divisors:

- $x_{1} x_{2}$
- $x_{1} e_{1}$
- $x_{1} e_{2}$
- $x_{2} e_{1}$
- $x_{2} e_{2}$
- $e_{1} e_{2}$

Actually, we store the negation of the found single-cube divisors, ie:

$$
\overline{x_{1} x_{2}}=\bar{x}_{1}+\bar{x}_{2}
$$

Creating double-cube divisors The FX way

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}
x_{3}	e_{1}	e_{2}	
x_{1}	x_{2}	t_{1}	t_{1}
	t_{3}		
x_{3}	t_{1}	t_{2}	t_{3}
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}

- Find common divisors by pairwise comparison of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	χ_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- Find common divisors by pairwise comparison of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

| x_{1} | x_{2} | e_{1} | e_{2} |
| :---: | :---: | :---: | :---: |x_{3}

- Find common divisors by pairwise comparison of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	χ_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- Find common divisors by pairwise comparison of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	χ_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- Find common divisors by pairwise comparison of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}
	x_{3}	e_{1}	e_{2}
x_{1}	x_{2}	t_{1}	t_{1}
t_{3}			
x_{3}	t_{1}	t_{2}	t_{3}
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}

- Find common divisors by pairwise comparison of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}
	x_{3}	e_{1}	e_{2}
x_{1}	x_{2}	t_{1}	t_{1}
	t_{3}		
x_{3}	t_{1}	t_{2}	t_{3}
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}

- Find common divisors by pairwise comparison of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- Find common divisors by pairwise comparison of cubes. This behaviour is $O\left(n^{2}\right)$, where n is the number of cubes.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	χ_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	χ_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- Find common divisors by pairwise comparison of cubes.
- For each cube pair: literals are compared.

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}
	x_{3}	e_{1}	e_{2}
x_{1}	x_{2}	t_{1}	t_{1}
t_{3}			
x_{3}	t_{1}	t_{2}	t_{3}
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}

- Find common divisors by pairwise comparison of cubes.
- For each cube pair: literals are compared.

Divisor:

$$
\frac{c_{i}}{c_{i} \cap c_{j}}+\frac{c_{j}}{c_{i} \cap c_{j}}
$$

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}
	x_{3}	e_{1}	e_{2}
x_{1}	x_{2}	t_{1}	t_{1}
t_{3}			
x_{3}	t_{1}	t_{2}	t_{3}
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}

- Find common divisors by pairwise comparison of cubes.
- For each cube pair: literals are compared.

Divisor:

$$
x_{1} x_{2}+x_{3}
$$

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

x_{1}	x_{2}	e_{1}	e_{2}
x_{3}	e_{1}	e_{2}	
x_{1}	x_{2}	t_{1}	t_{1}
t_{3}			
x_{3}	t_{1}	t_{2}	t_{3}
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}

- Find common divisors by pairwise comparison of cubes.
- For each cube pair: literals are compared.

Divisor:

$$
\begin{gathered}
x_{1} x_{2}+x_{3} \\
\bar{x}_{1}+\bar{x}_{2}
\end{gathered}
$$

Creating double-cube divisors - The FX way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- Find common divisors by pairwise comparison of cubes.

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	
t_{3}				
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- For each cube pair: literals are compared.

Divisor:

$$
\begin{gathered}
x_{1} x_{2}+x_{3} \\
\bar{x}_{1}+\bar{x}_{2}
\end{gathered}
$$

Here is the reason why, when creating single cube divisors, we stored the negation of $x_{1} x_{2}$. (Normalization)

FX - Result

$f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
The first picked divisor is $x_{1} x_{2}+x_{3}$ which lead to:

- $f=G e_{1} e_{2}+G t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
- $G=x_{1} x_{2}+x_{3}$

FX - Result

$f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
The first picked divisor is $x_{1} x_{2}+x_{3}$ which lead to:

- $f=G e_{1} e_{2}+G t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
- $G=x_{1} x_{2}+x_{3}$

Followed by: $x_{1} x_{2}\left(\bar{x}_{1}+\bar{x}_{2}\right)$

- $f=G e_{1} e_{2}+G t_{1} t_{2} t_{3}+\bar{H} \bar{x}_{3} v_{1} v_{2}$
- $G=H+x_{3}$
- $H=x_{1} x_{2}$

FX - Result

$f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
The first picked divisor is $x_{1} x_{2}+x_{3}$ which lead to:

- $f=G e_{1} e_{2}+G t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
- $G=x_{1} x_{2}+x_{3}$

Followed by: $x_{1} x_{2}\left(\bar{x}_{1}+\bar{x}_{2}\right)$

- $f=G e_{1} e_{2}+G t_{1} t_{2} t_{3}+\bar{H} \bar{x}_{3} v_{1} v_{2}$
- $G=H+x_{3}$
- $H=x_{1} x_{2}$

Followed by: $\bar{H} \bar{x}_{3}\left(H+x_{3}\right)$

- $f=G e_{1} e_{2}+G t_{1} t_{2} t_{3}+\bar{K} v_{1} v_{2}$
- $G=\bar{K}$
- $H=x_{1} x_{2}$
- $K=\bar{H} \bar{x}_{3}$

Creating double-cube divisors The FXCH way

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

Find common divisors with the help of a sub-cube

x_{1}	χ_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- For each cube FXCH will:

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	V_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	V_{2}	

Cubes
$X_{1} X_{2} e_{1} e_{2}$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes Sub-cubes
$x_{1} x_{2} e_{1} e_{2} \quad x_{2} e_{1} e_{2}$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes Sub-cubes
$x_{1} x_{2} e_{1} e_{2} \quad x_{2} e_{1} e_{2} \quad e_{1} e_{2}$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes ${ }^{\text {Sub-cubes }}$

$x_{1} x_{2} e_{1} e_{2} \quad x_{2} e_{1} e_{2} \quad e_{1} e_{2} \quad x_{2} e_{2}$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{X}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes Sub-cubes
$\begin{array}{lllll}x_{1} x_{2} e_{1} e_{2} & x_{2} e_{1} e_{2} & e_{1} e_{2} & x_{2} e_{2} & x_{2} e_{1}\end{array}$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	V_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	V_{1}	v_{2}	

Cubes Sub-cubes

$$
\begin{array}{lllll}
x_{1} x_{2} e_{1} e_{2} & \begin{array}{llll}
x_{2} e_{1} e_{2} & e_{1} e_{2} & x_{2} e_{2} & x_{2} e_{1} \\
x_{1} e_{1} e_{2} & & &
\end{array}
\end{array}
$$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes Sub-cubes

$$
\begin{array}{l|llll}
x_{1} x_{2} e_{1} e_{2} & \begin{array}{llll}
x_{2} e_{1} e_{2} & e_{1} e_{2} & x_{2} e_{2} & x_{2} e_{1} \\
x_{1} e_{1} e_{2} & x_{1} e_{2} & &
\end{array}
\end{array}
$$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes Sub-cubes

$$
\begin{array}{l|llll}
x_{1} x_{2} e_{1} e_{2} & x_{2} e_{1} e_{2} & e_{1} e_{2} & x_{2} e_{2} & x_{2} e_{1} \\
& x_{1} e_{1} e_{2} & x_{1} e_{2} & x_{1} e_{1} &
\end{array}
$$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	V_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	V_{1}	v_{2}	

Cubes Sub-cubes

$$
\begin{array}{l|llll}
x_{1} x_{2} e_{1} e_{2} & \begin{array}{llll}
x_{2} e_{1} e_{2} & e_{1} e_{2} & x_{2} e_{2} & x_{2} e_{1} \\
x_{1} e_{1} e_{2} & x_{1} e_{2} & x_{1} e_{1} & \\
x_{1} x_{2} e_{2} & & &
\end{array} .
\end{array}
$$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	V_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	V_{1}	v_{2}	

Cubes Sub-cubes

$$
x_{1} x_{2} e_{1} e_{2} \left\lvert\, \begin{array}{llll}
x_{2} e_{1} e_{2} & e_{1} e_{2} & x_{2} e_{2} & x_{2} e_{1} \\
x_{1} e_{1} e_{2} & x_{1} e_{2} & x_{1} e_{1} & \\
x_{1} x_{2} e_{2} & x_{1} x_{2} & &
\end{array}\right.
$$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	V_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	V_{1}	v_{2}	

Cubes Sub-cubes

$x_{1} x_{2} e_{1} e_{2} |$| $x_{2} e_{1} e_{2}$ | $e_{1} e_{2}$ | $x_{2} e_{2}$ | $x_{2} e_{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| $x_{1} e_{1} e_{2}$ | $x_{1} e_{2}$ | $x_{1} e_{1}$ | |
| $x_{1} x_{2} e_{2}$ | $x_{1} x_{2}$ | | |
| $x_{1} x_{2} e_{1}$ | | | |

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes Sub-cubes

$x_{1} x_{2} e_{1} e_{2}$	$x_{2} e_{1} e_{2}$	$e_{1} e_{2}$	$x_{2} e_{2}$	$x_{2} e_{1}$
$x_{3} e_{1} e_{2}$	$x_{1} e_{1} e_{2}$	$x_{1} e_{2}$	$x_{1} e_{1}$	
$x_{1} x_{2} e_{2}$	$x_{1} x_{2}$			
$x_{1} x_{2} e_{1}$				

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

Cubes Sub-cubes

$x_{1} x_{2} e_{1} e_{2}$	$x_{2} e_{1} e_{2}$	$e_{1} e_{2}$	$x_{2} e_{2}$	$x_{2} e_{1}$
$x_{3} e_{1} e_{2}$	$x_{1} e_{1} e_{2}$	$x_{1} e_{2}$	$x_{1} e_{1}$	
$x_{1} x_{2} e_{2}$	$x_{1} x_{2}$			
	$x_{1} x_{2} e_{1}$			

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	χ_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- Imagining a perfect hashing, a hit means that a common divisor exists.

Cubes

$$
\begin{array}{c|cccc}
x_{1} x_{2} e_{1} e_{2} & x_{2} e_{1} e_{2} & e_{1} e_{2} & x_{2} e_{2} & x_{2} e_{1} \\
x_{3} e_{1} e_{2} & x_{1} e_{1} e_{2} & x_{1} e_{2} & x_{1} e_{1} & \\
x_{1} x_{2} e_{2} & x_{1} x_{2} & & \\
x_{1} x_{2} e_{1} & & &
\end{array}
$$

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	t_{3}
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	V_{2}	
\bar{x}_{2}	\bar{X}_{3}	v_{1}	v_{2}	

- Generated all sub-cubes by removing 1 and 2 literals, and add them to the same hash table.
- Imagining a perfect hashing, a hit means that a common divisor exists.

Indeed, it found the divisor:

$$
x_{1} x_{2}+x_{1}
$$

Which is created using the removed literals of each cube.

Creating double-cube divisors - The FXCH way

$$
f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}
$$

- For each cube FXCH will:
- Add the cube itself to a hash table.
- Generated all sub-cubes by removing 1

x_{1}	x_{2}	e_{1}	e_{2}	
x_{3}	e_{1}	e_{2}		
x_{1}	x_{2}	t_{1}	t_{1}	
	t_{3}			
x_{3}	t_{1}	t_{2}	t_{3}	
\bar{x}_{1}	\bar{x}_{3}	v_{1}	v_{2}	
\bar{x}_{2}	\bar{x}_{3}	v_{1}	v_{2}	

- Imagining a perfect hashing, a hit means that a common divisor exists.

Indeed, it found the divisor:

$$
x_{1} x_{2}+x_{1}
$$

Which is created using the removed literals of each cube. But FXCH limits divisors to a small set of functions (1, NAND, XOR, MUX)!
So, this divisor is discarded.

FXCH - Result

$f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
The first picked divisor is $x_{1} x_{2}\left(\bar{x}_{1}+\bar{x}_{2}\right)$ which lead to:

- $f=G e_{1} e_{2}+x_{3} e_{1} e_{2}+G t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{G} \bar{x}_{3} v_{1} v_{2}$
- $G=x_{1} x_{2}$

FXCH - Result

$f=x_{1} x_{2} e_{1} e_{2}+x_{3} e_{1} e_{2}+x_{1} x_{2} t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{x}_{1} \bar{x}_{3} v_{1} v_{2}+\bar{x}_{2} \bar{x}_{3} v_{1} v_{2}$
The first picked divisor is $x_{1} x_{2}\left(\bar{x}_{1}+\bar{x}_{2}\right)$ which lead to:

- $f=G e_{1} e_{2}+x_{3} e_{1} e_{2}+G t_{1} t_{2} t_{3}+x_{3} t_{1} t_{2} t_{3}+\bar{G} \bar{x}_{3} v_{1} v_{2}$
- $G=x_{1} x_{2}$

Followed by: $\bar{G} \bar{x}_{3}\left(G+x_{3}\right)$

- $f=\bar{H} e_{1} e_{2}+\bar{H} t_{1} t_{2} t_{3}+H v_{1} v_{2}$
- $G=x_{1} x_{2}$
- $H=\bar{G} \bar{x}_{3}$

FXCH - Limiting divisor functions

The complete set of possible double-cube divisors with complements is summarized in Theorem 1 in [Rajski et al '92]. The set implies that using canonical basis NAND, XOR (\oplus), and MUX as divisor functions imposes a duality property in such divisors, meaning that the complement of a divisor is also a divisor.

FXCH - Limiting divisor functions

The complete set of possible double-cube divisors with complements is summarized in Theorem 1 in [Rajski et al '92]. The set implies that using canonical basis NAND, XOR (\oplus), and MUX as divisor functions imposes a duality property in such divisors, meaning that the complement of a divisor is also a divisor.

Observe that this limitation forbids factors of the form $x_{1} x_{2}+x_{3}$, because its complement function $\bar{x}_{1} \bar{x}_{3}+\bar{x}_{2} \bar{x}_{3}$ is not a kernel, hence can not be used by algebraic extraction.

FXCH - Limiting divisor functions

The complete set of possible double-cube divisors with complements is summarized in Theorem 1 in [Rajski et al '92]. The set implies that using canonical basis NAND, XOR (\oplus), and MUX as divisor functions imposes a duality property in such divisors, meaning that the complement of a divisor is also a divisor.

Observe that this limitation forbids factors of the form $x_{1} x_{2}+x_{3}$, because its complement function $\bar{x}_{1} \bar{x}_{3}+\bar{x}_{2} \bar{x}_{3}$ is not a kernel, hence can not be used by algebraic extraction.

This means that when FX chooses to extract $x_{1} x_{2}+x_{3}$, it does not account for its complement. This affects the relative balance of aggregated scores and leads to an inaccuracy of potential savings, which is likely to be more pronounced in larger problems.

FXCH - Cube Grouping

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}					
1	1	-	1	0					
-	1	1	1	0					
0	0	0	1	1					
0	1	1	1	1					
1	-	1	0	1					
1	1	0	0	1	\quad		y_{1}	x_{1}	x_{2}
:---	:---	:---	:---						
	y_{1}	x_{2}	x_{3}						
y_{1}	$\overline{x_{1}}$	$\overline{x_{2}}$	$\overline{x_{3}}$						
y_{1}	$\overline{x_{1}}$	x_{2}	x_{3}						
y_{2}	$\overline{x_{1}}$	$\overline{x_{2}}$	$\overline{x_{3}}$						
y_{2}	$\overline{x_{1}}$	x_{2}	x_{3}						
y_{2}	x_{1}	x_{3}							
y_{2}	x_{1}	x_{2}	$\overline{x_{3}}$						

FXCH - Cube Grouping

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}
1	1	-	1	0
-	1	1	1	0
0	0	0	1	1
0	1	1	1	1
1	-	1	0	1
1	1	0	0	1

y_{1}	x_{1}	χ_{2}	
y_{1}	x_{2}	x_{3}	
$y_{1} y_{2}$	\bar{x}_{1}	\bar{x}_{2}	$\overline{x_{3}}$
$y_{1} y_{2}$	\bar{x}_{1}	χ_{2}	x_{3}
y_{2}	x_{1}	x_{3}	
y_{2}	x_{1}	χ_{2}	\bar{x}_{3}

Table of Contents

(1) Motivation

(2) Background

(3) FX vs FXCH

- Creating single-cube divisors
- Creating double-cube divisors
(4) Results

Results - Cube Grouping

Table: The impact of using cube grouping

	Run-time (s)		Memory (Mb)	
	w/ CG	w/o CG	w/ CG	w/o CG
$37 / 143$	2.95	14.47	113.36	673.14
$38 / 67$	1.16	2.75	58.64	265.11
$128 / 43$	1.90	4.73	105.48	430.69
$128 / 53$	1.63	3.89	102.21	421.89
$128 / 55$	2.03	6.44	104.95	523.19
$128 / 69$	2.72	14.64	106.84	556.56
$128 / 94$	4.56	29.38	120.44	1013.58
$128 / 104$	3.98	24.25	120.61	915.76
$128 / 160$	8.35	56.71	226.32	1882.85
ratios:	$\mathbf{0 . 1 9}$	$\mathbf{1}$	$\mathbf{0 . 1 6}$	$\mathbf{1}$

Results - EPFL Multiple-output PLA Behnchmakrs

Table: Logic synthesis results: comparison of $f x c h, f x$ and jee

	fxch in $A B C$				$f x$ in ABC				jee factoring				
Design	t , sec	m, Mb	\#nodes	\#\|v1	t , sec	m, Mb	\#nodes	\#\|vi	t, sec	m, Mb	\#nodes	\#\|v	
37/143	2.95	113	3835	22	18.18	11	4695	24	4.3	37	3587	24	
38/67	1.16	59	3438	19	2.14	7	3727	18	2.0	25	3366	20	
128/43	1.90	105	3051	18	2.43	9	3702	18	2.3	22	3191	18	
128/53	1.63	102	2708	18	2.09	9	3261	19	2.0	23	2944	19	
128/55	2.03	105	3079	18	2.46	10	3905	18	2.1	22	3069	20	
128/69	2.72	107	3415	19	4.60	14	4295	20	2.7	28	3326	20	
128/94	4.56	120	5140	21	9.50	20	6271	22	6.3	46	5266	24	
128/104	3.98	121	4916	20	7.61	17	5853	21	5.7	44	4926	23	
128/160	8.35	226	7358	23	21.02	30	8889	24	15.5	76	7268	24	
ati	. 42	8.33	0.83	. 97	1	1	1	1	0.61	2.54	0.83	04	

Results - Primes (Scalability)

Table: Results of the synthesis of the primality testing circuits.

	fxch in ABC				$f x$ in ABC				jee factoring					
\#inputs	t , sec	m, Mb	\#nodes	\#\|vi	t , sec	m, Mb	\#nodes	\#\|v		t, sec	m, Mb	\#nodes	\#\|v	
11	0.02	7	455	13	0.03	2	471	13		3	492	13		
12	0.04	13	739	14	0.13	2	771	14	0.1	5	825	14		
13	0.10	25	1355	15	0.53	2	1440	15	0.3	9	1419	15		
14	0.25	50	2046	16	2.07	3	2401	16	1.4	20	2287	16		
15	0.62	100	3670	17	7.99	5	4174	17	8.5	58	3989	17		
16	1.55	202	6289	18	30.87	11	7448	18	41.2	151	6491	18		
17	3.91	407	11413	19	129	23	11650	19	66.7	157	12096	19		
18	12.97	827	17260	20	507	72	22158	20	167.8	169	18144	19		
ratios:	0.03	13.6	0.86	1	1	1	1	1	0.42	4.8	0.91	1		

