Multi—level Logic Benchmarks: An
Exactnhess Study

Luca Amaru™,
Mathias Soeken®, Winston Haaswijk®, Eleonora Testa®, Patrick Vuillod*,
Jiong Luo*, Pierre—Emmanuel Gaillardon*, Giovanni De Michelit

*Synopsys Inc., Design Group, Sunnyvale, California, USA
TIntegrated Systems Laboratory, EPFL, Lausanne, Switzerland
FLNIS, University of Utah, Salt Lake City, Utah, USA

SYNOPSYS (I)ﬂ e

ECOLE POLYTECHNIQUE UNIVERSITY
FEDERALE DE LAUSANNE OF UTAH



Outline

® Motivation and Background

® How to Build Exact (Multi—level) Benchmarks

® Measuring the Exact—Heuristic Gap in Synthesis

& Conclusions



Outline

® Motivation and Background

® How to Build Exact (Multi—level) Benchmarks

® Measuring the Exact—Heuristic Gap in Synthesis

& Conclusions



Benchmarks in EDA

® The EDA community heavily relies on benchmarks to evaluate
the performance of academic and commercial tools.

-
.

® Logic optimization and synthesis are core EDA tasks where
benchmarking is essential.




Historical Background

ISCAS 85

1955 INTERMATIOMAL

® The first set of combinational be |
ISCAS’ 85.

reported in

1989 IEEE
INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS

PROCEEDINGS @&
Volume 1 of 3 250

® Sequential circuits

® In 1991, all benc stributed under

the maintenance MCNC]

Connecting Morth Carolina’s Future Today



Historical Background

® After MCNC, many other benchmark suites were proposed for
some classes of EDA tasks:

@ High level syn
FPGA i
Physical desig===

Testing

® B BB

® In 2005, a new

_hesis was
P
presented at I\ _ _ '

RGN S Rd ECOLE POLYTECHNIQUE
SANNE
presented at IWLS! FEDERALE DE LAU

renchmarks was

® Missing feature: Can we compare against exact synthesis
results for multi—level benchmarks?



Exact—size Benchmarks

Exact size benchmarks

TCAD paper 2007

LEKO and LEKU

@ LEKO: known optimum
% LEKU known upper—-bound

Exactness idea: replicate a small
circuit, in a special way, with a known
optimum solution

® The composite circuit is also optimal

LEKU = LEKO collapsing + gate
decomposition

Optimality Study of Logic Synthesis
for LUT-Based FPGAs
Jassisa, Covaigg acial K il Sllmkirwich




Exact—size Benchmarks

® LEKO Example: Sl
C; circuit

Lagena

. Cutput Mode
P
I Inemal Nods

4§ N nput Mode

Hode Values
01 =rl MG | - . .
X = A3 WA .
Sur Composite circuit:
O = 3 - NG
05 = A # M1
Mi=|]-1Z+012
MWl -IF+HI"- 13

MO = NT - N
P = N1 & NS
M T N
Ml a1
MY
PR3 W1

B WG+ 12
NS N7 1S

MM W17 e T
BT A NS

MR = HET « FOT

Mt W13 NEY 13
PO+ M

M= +I15

M2 = H13- N2

M3 = WY - MET

Pl m W13+ M2




Motivation For This Work

If we want to measure the ultimate performance of logic synthesis
heuristics, we need exact results for multi—level logic benchmarks

Exact results and benchmarks for size do exist: LEKO & LEKU

In this work, we show how to build exact depth benchmarks

® Measure the ultimate performance of delay—oriented synthesis
algorithms and tools

We provide a non—replicative method to build exact depth, multi—-
level circuits, with:

& Non-—trivial functionality
% Non—monotone

% No disjoint support decomposition



Outline

® Motivation and Background

® How to Build Exact (Multi—level) Benchmarks

® Measuring the Exact—Heuristic Gap in Synthesis

& Conclusions



Exact Benchmarks

® Problem: we want to
techniques,

® Thousands of I/0
@ Tens of thousands of gates
® Potentially small delay (but large delay as starting point)

® Solution: build synthetic benchmarks that are provably optimal
@ Avoid trivial cases
@ Avoid monotone circuits
@ Avoid disjoint support decomposable circuits
® Add extra complexity



Why Synthetic Exact Benchmarks?

® Question:

&

® Relates to the M

9'\ o 1 . 0
Flexibility on
the

ge at

Hardness of Intrinsic
Exact Circuit Complexity of
Generation the Problem

functionality

® Relax constraints t

® Impose complexity constraints on the function but not on the
actual functionality

® The logic synthesis version of Heisenberg’'s uncertainty principle:

® The more we want to know the functionality a priori, the harder it
becomes to know the exact circuit



Balanced—tree Exact Circuits

How to build exact—depth Hill
— +
multi—level circuits? t abc abd

Let’ s start from a simple ‘

concept and move from there e
Balanced—tree circuits with / \
distinct inputs as leaves are

depth optimal by construction

Intuitively true, easy to prove ; ; ; ;




Are Balanced—tree Circuits
Depth Optimal?
® Proof by contradiction:

® A balanced tree is a n level implementation for a 2”7 variables function.

® Let s assume it is possible to implement the same function in n—7 levels

f = abc + abd
4 variables case |

® The function realized cannot depend on all 27 variables: hence the
contradiction.




Construction Algorithm: v1.0

® Simple algorithm:

® Generate a binary tree with n levels, 27 leaves, 27 — 1 nodes
® Populate the nodes (randomly) with AND/OR binary operators
® Populate the leaves with distinct primary inputs

® The root of the tree is the primary output

f = abc + abd
| ® Problem:

/e\ .

606 606 ® synthesis
easily




® ® B B B

Construction Algorithm: v1.5

Breaking the monotone property:

Algorithm 1 Generation of depth-optimal multi-level circuits

\V: with disjoint support.

INPUT: Complexity measure n
% OUTPUT: Depth-optimal circuit with 2" inputs.
=% create empty balanced binary tree with n levels;
5g for each node n do
assign n a random binary operator;

end for @
enforce the presence of dw—<ast one binate operator;




Disjoint Support Decomposition

® Addressed problem: the functions implemented are not monotone

® Remaining problem:




Breaking the DSD Property

® We need portions of logic with possibly joint support

s o




Breaking the DSD Property

® Idea: merge depth optimal tree circuits with shared support!

g 8
so0ES s o

® Each tree is generated by the previous algorithm

® Functions are non—monotone

® The two trees can be combined with a top binary operator
® XOR/XNOR are preferable



Benchmark Properties
|

B

/e\ /o\

% The circuit obtained has: ® The function implemented is:

bl
® 2" inputs ® Non—monotone

® n+1 levels
® Not directly DSD decomposable

® 27 -1 nodes



Exactnhess

Atmost 1 level far from the lower bouqd
I LLower bound e : ]l

/ R

/e\ /o\

sodES ¢ »

® This is true if the cardinality of the functional support is 2”7

® More about this in a moment



Adding More Complexity
|

O)

{ e
é 0

}
é o

SIS MR e s nic- - BAD NEWS: we may decrease the

o
6060

® Can we make the circuit more complex?

cardinality of the functional support
® Add primary outputs as intermnar rnooc




Functional Support

® Simple example:

a+tc+d
Functional support ‘ Functional support
cardinality = 4 cardinality = 4

ab+c+d /GN’ +¢c  d

soe S ¢ b




Verifying the Functional Support

® Solution: Check the functional support of the composite circuit
% BDD techniques |
® SAT techniques @

™
Py e
/e\ /o\ /e\ /@\

abc 01> read example.blif; strash; print_supp -s
Total func supps
Total struct supps
Sat runs SAT

Sat runs UNSAT

Simulation
Traversal
Fraiging
SAT

TOTAL

abc 03> [

ool i unil




Construction Algorithm: v2.0

® Final construction algorithm:

Algorithm 2 Generation of depth-optimal multi-level circuits
with joint support.
INPUT: Complexity measure n
OUTPUT: Depth-optimal circuit with 2™ inputs.
A = Algorithm 1(n);
B = Algorithm 1(n);

share primary inputs of A and B;
create node n that joins roots of A and B;

assign node n to a random binary operator;
set n as primary output of the composite circuit;
verify the functional support of the composite circuit;

® Hard to synthesize circuits (non—monotone, non—DSD)

® At most 1 level far from the optimum



Exact Benchmark Example

® Example circuit with complexity measure = 4
® 16 inputs

® Result strashed into AIG

® The depth optimality is not guaranteed after strashing




Outline

® Motivation and Background

® How to Build Exact (Multi-level) Benchmarks

® Measuring the Exact—Heuristic Gap in Synthesis

& Conclusions



Experiments: Initial Circuits

® Starting implementation: BDD—collapsing of exact circuits

2" inputs 2" Inputs
nt1 levels — 2" levels

on+1_1 | 2" < # nodes <

s EE—
e ,

W



ExperimentS' Sample Testing Flow

BDD collapsing °\
éaéaéaéa .

e AlIG optimization
\.\

H\,

Mapping onto:

AND (unit cost) OR (unit cost)
6 b 6 b XOR (unit cost) INV (free)




Experimental Results

® Use of different delay synthesis techniques
& Starting point: collapsed BDD

® DSD, AIG, MIG, AlG—strashing of the exact circuit

Number of Levels vs. Complexity SYNTHESIS E\FEIREILEIIEI‘;J'I%& LoGIc DEPTH
2,000 ) Complexity | Sub-opt. | DSD | AIG | MIG
—+— Sub-optimal : 17
——  DSD
—f— AlG
MIG
—=— Strash-Exact i : 886 | 356 | 243

L1792 | 1267 | 1182

1,500

' 1,000

Benchmark Complexity




Experimental Results

® Same setup, reporting size values:

, TABLE II
Number of Nodes vs. Complexity SYNTHESIS EXPERIMENTS: LOGIC SIZE

104

Complexity StEact
B O 3

—#— Sub-optimal
—h— DSD
s AlIG
MIG
—&— Strash-Exact

5|

I N1 0 T
7|
—

Benchmark Comlexity ® 1024 inputs already has a 0.6M
cncnmar Omplexity nodes BDD

@ After that, collapsing becomes
difficult and BDD—size is out of

scale



Outline

® Motivation and Background

® How to Build Exact (Multi—level) Benchmarks

® Measuring the Exact—Heuristic Gap in Synthesis

& Conclusions



Conclusions and Future Research

® We presented a method to generate exact—depth multilevel benchmarks
@ Non-—trivial functionality: non—-monotone, non—DSD
® Benchmark generation is efficient
® Circuits with less than 210 inputs can be generated in matter of seconds

® Circuits with more than 210 inputs can be generated in matter of minutes

® Bottleneck is functional support check

® We proved an exponential gap between known optimal results and
heuristics

® More research is still needed in logic synthesis!

® Future research will consider:

@® More control on the implemented logic function in the exact benchmark

® Possibility to embed specific functions, or function classes, frequently appearing
in practical designs

® More scalable collapsing
® Hybrid BDD/SAT based collapsing 35



Questions?

Thank you for your attention!



	Multi-level Logic Benchmarks: An Exactness Study 
	Outline
	Outline
	Benchmarks in EDA
	Historical Background
	Historical Background
	Exact-size Benchmarks
	Exact-size Benchmarks
	Motivation For This Work
	Outline
	Exact Benchmarks
	Why Synthetic Exact Benchmarks?
	Balanced-tree Exact Circuits
	Are Balanced-tree Circuits �Depth Optimal?
	Construction Algorithm: v1.0
	スライド番号 16
	Disjoint Support Decomposition
	Breaking the DSD Property
	Breaking the DSD Property
	Benchmark Properties
	Exactness
	Adding More Complexity
	Functional Support
	Verifying the Functional Support
	スライド番号 25
	Exact Benchmark Example
	Outline
	Experiments: Initial Circuits
	Experiments: Sample Testing Flow
	Experimental Results
	スライド番号 31
	Outline
	Conclusions and Future Research
	Questions?

