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The EDA community heavily relies on benchmarks to evaluate 
the performance of academic and commercial tools.

Logic optimization and synthesis are core EDA tasks where 
benchmarking is essential.

Benchmarks in EDA



The first set of combinational benchmarks was reported in 
ISCAS’85.

Sequential circuits were added in ISCAS’89.

In 1991, all benchmarks were collected and distributed under 
the maintenance of the MCNC.

Historical Background



After MCNC, many other benchmark suites were proposed for 
some classes of EDA tasks:

High level synthesis

FPGA

Physical design

Testing

….

In 2005, a new set of benchmarks for logic synthesis was 
presented at IWLS.

In 2015, a new set of purely combinational benchmarks was 
presented at IWLS.

Missing feature: Can we compare against exact synthesis 
results for multi-level benchmarks?

Historical Background



Exact size benchmarks

TCAD paper 2007

LEKO and LEKU

LEKO: known optimum

LEKU known upper-bound

Exactness idea: replicate a small 
circuit, in a special way, with a known 
optimum solution

The composite circuit is also optimal

LEKU = LEKO collapsing + gate 
decomposition

Exact-size Benchmarks



LEKO Example:
C5 circuit

Composite circuit: 

LEKO G25

Exact-size Benchmarks



Motivation For This Work

If we want to measure the ultimate performance of logic synthesis 
heuristics, we need exact results for multi-level logic benchmarks

Exact results and benchmarks for size do exist: LEKO & LEKU

In this work, we show how to build exact depth benchmarks

Measure the ultimate performance of delay-oriented synthesis 
algorithms and tools

We provide a non-replicative method to build exact depth, multi-
level circuits, with:

Non-trivial functionality

Non-monotone

No disjoint support decomposition
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Exact Benchmarks

Problem: we want to measure the efficiency of heuristic delay 
optimization techniques, for large circuits with known optimum 
results

Thousands of I/0

Tens of thousands of gates

Potentially small delay (but large delay as starting point)

Solution: build synthetic benchmarks that are provably optimal

Avoid trivial cases

Avoid monotone circuits

Avoid disjoint support decomposable circuits

Add extra complexity 



Why Synthetic Exact Benchmarks?

Question: why synthetic exact benchmarks?

Generating optimum circuits for arbitrary functions is an 
intractable problem

Relates to the MCSP 

Thought to be at least NP-hard, still unproven

Relax constraints to make the problem tractable

Impose complexity constraints on the function but not on the 
actual functionality

The logic synthesis version of Heisenberg's uncertainty principle:

The more we want to know the functionality a priori, the harder it 
becomes to know the exact circuit

Flexibility on 
the 

functionality

Hardness of 
Exact Circuit 
Generation

Intrinsic 
Complexity of 
the Problem



Balanced-tree Exact Circuits

How to build exact-depth 
multi-level circuits?

Let’s start from a simple 
concept and move from there

Balanced-tree circuits with 
distinct inputs as leaves are 
depth optimal by construction

Intuitively true, easy to prove



Are Balanced-tree Circuits 
Depth Optimal?

a c db

The function realized cannot depend on all 2n variables: hence the 
contradiction.

Proof by contradiction:

A balanced tree is a n level implementation for a 2n variables function.

Let’s assume it is possible to implement the same function in n-1 levels

4 variables case



Construction Algorithm: v1.0
Simple algorithm:

Generate a binary tree with n levels, 2n leaves, 2n - 1 nodes

Populate the nodes (randomly) with AND/OR binary operators

Populate the leaves with distinct primary inputs

The root of the tree is the primary output

Problem: the functions implemented are 
trivial

Only monotone circuits

Specialized synthesis algorithms can 
easily identify such structures



Breaking the monotone property:

Introduce negative unate and binate logic operators

NAND, NOR, XOR, XNOR binary operators

Complementation on the edges

Enforce the random operator population to have at least one binate 
operator

Construction Algorithm: v1.5



Disjoint Support Decomposition
Addressed problem: the functions implemented are not monotone

Remaining problem: the functions implemented are still easy to 
synthesize

Disjoint support decomposition is natively applicable here



Breaking the DSD Property

We need portions of logic with possibly joint support



Idea: merge depth optimal tree circuits with shared support!

Each tree is generated by the previous algorithm

Functions are non-monotone

The two trees can be combined with a top binary operator

XOR/XNOR are preferable

Breaking the DSD Property



Benchmark Properties

The circuit obtained has:

2n inputs

n +1 levels

2n -1 nodes

The function implemented is:

Non-monotone

Not directly DSD decomposable



Exactness

This is true if the cardinality of the functional support is 2n

More about this in a moment



Adding More Complexity

Can we make the circuit more complex?

Swap inputs of one tree

Add primary outputs as internal nodes

BAD NEWS: we may decrease the 
cardinality of the functional support



Functional Support
Simple example:

ab+c+d ab’+ c ^ d

a+c+d
Functional support 
cardinality = 4

Functional support 
cardinality = 4

Functional support 
cardinality = 3



Verifying the Functional Support
Solution: Check the functional support of the composite circuit

BDD techniques

SAT techniques



Final construction algorithm:

Hard to synthesize circuits (non-monotone, non-DSD)

At most 1 level far from the optimum

Construction Algorithm: v2.0



Exact Benchmark Example
Example circuit with complexity measure = 4 

16 inputs

Result strashed into AIG

The depth optimality is not guaranteed after strashing
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Experiments: Initial Circuits
Starting implementation: BDD-collapsing of exact circuits

2n+1-1 
nodes

2n inputs

2n levels

2n inputs

n+1 levels

2n < # nodes < 22^(n-1)



Experiments: Sample Testing Flow

Mapping onto:

AND (unit cost) OR (unit cost)

XOR (unit cost)  INV (free)

AIG optimization

BDD collapsing



Experimental Results
Use of different delay synthesis techniques

Starting point: collapsed BDD

DSD, AIG, MIG, AIG-strashing of the exact circuit

Exponential gap between known 
optimal results and heuristics



Same setup, reporting size values:

Exponential gap also for size

Limit for scalability: BDD 
collapsing

1024 inputs already has a 0.6M 
nodes BDD

After that, collapsing becomes 
difficult and BDD-size is out of 
scale

Experimental Results
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Conclusions and Future Research

33

We presented a method to generate exact-depth multilevel benchmarks

Non-trivial functionality: non-monotone, non-DSD

Benchmark generation is efficient

Circuits with less than 210 inputs can be generated in matter of seconds

Circuits with more than 210 inputs can be generated in matter of minutes 

Bottleneck is functional support check

We proved an exponential gap between known optimal results and 
heuristics

More research is still needed in logic synthesis!

Future research will consider:

More control on the implemented logic function in the exact benchmark

Possibility to embed specific functions, or function classes, frequently appearing 
in practical designs

More scalable collapsing

Hybrid BDD/SAT based collapsing



Questions?

Thank you for your attention!

34
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