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Benchmarks in EDA

® The EDA community heavily relies on benchmarks to evaluate
the performance of academic and commercial tools.

-
.

® Logic optimization and synthesis are core EDA tasks where
benchmarking is essential.




Historical Background
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Historical Background

® After MCNC, many other benchmark suites were proposed for
some classes of EDA tasks:
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® Missing feature: Can we compare against exact synthesis
results for multi—level benchmarks?



Exact—size Benchmarks

Exact size benchmarks

TCAD paper 2007

LEKO and LEKU

@ LEKO: known optimum
% LEKU known upper—-bound

Exactness idea: replicate a small
circuit, in a special way, with a known
optimum solution

® The composite circuit is also optimal

LEKU = LEKO collapsing + gate
decomposition
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Exact—size Benchmarks

® LEKO Example: Sl
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Motivation For This Work

If we want to measure the ultimate performance of logic synthesis
heuristics, we need exact results for multi—level logic benchmarks

Exact results and benchmarks for size do exist: LEKO & LEKU

In this work, we show how to build exact depth benchmarks

® Measure the ultimate performance of delay—oriented synthesis
algorithms and tools

We provide a non—replicative method to build exact depth, multi—-
level circuits, with:

& Non-—trivial functionality
% Non—monotone

% No disjoint support decomposition
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Exact Benchmarks

® Problem: we want to
techniques,

® Thousands of I/0
@ Tens of thousands of gates
® Potentially small delay (but large delay as starting point)

® Solution: build synthetic benchmarks that are provably optimal
@ Avoid trivial cases
@ Avoid monotone circuits
@ Avoid disjoint support decomposable circuits
® Add extra complexity



Why Synthetic Exact Benchmarks?

® Question:

&
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functionality

® Relax constraints t

® Impose complexity constraints on the function but not on the
actual functionality

® The logic synthesis version of Heisenberg’'s uncertainty principle:

® The more we want to know the functionality a priori, the harder it
becomes to know the exact circuit



Balanced—tree Exact Circuits

How to build exact—depth Hill
— +
multi—level circuits? t abc abd

Let’ s start from a simple ‘

concept and move from there e
Balanced—tree circuits with / \
distinct inputs as leaves are

depth optimal by construction

Intuitively true, easy to prove ; ; ; ;




Are Balanced—tree Circuits
Depth Optimal?
® Proof by contradiction:

® A balanced tree is a n level implementation for a 2”7 variables function.

® Let s assume it is possible to implement the same function in n—7 levels

f = abc + abd
4 variables case |

® The function realized cannot depend on all 27 variables: hence the
contradiction.




Construction Algorithm: v1.0

® Simple algorithm:

® Generate a binary tree with n levels, 27 leaves, 27 — 1 nodes
® Populate the nodes (randomly) with AND/OR binary operators
® Populate the leaves with distinct primary inputs

® The root of the tree is the primary output

f = abc + abd
| ® Problem:

/e\ .
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Construction Algorithm: v1.5

Breaking the monotone property:

Algorithm 1 Generation of depth-optimal multi-level circuits

\V: with disjoint support.

INPUT: Complexity measure n
% OUTPUT: Depth-optimal circuit with 2" inputs.
=% create empty balanced binary tree with n levels;
5g for each node n do
assign n a random binary operator;

end for @
enforce the presence of dw—<ast one binate operator;




Disjoint Support Decomposition

® Addressed problem: the functions implemented are not monotone

® Remaining problem:




Breaking the DSD Property

® We need portions of logic with possibly joint support

s o




Breaking the DSD Property

® Idea: merge depth optimal tree circuits with shared support!
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® Each tree is generated by the previous algorithm

® Functions are non—monotone

® The two trees can be combined with a top binary operator
® XOR/XNOR are preferable



Benchmark Properties
|
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% The circuit obtained has: ® The function implemented is:

bl
® 2" inputs ® Non—monotone

® n+1 levels
® Not directly DSD decomposable

® 27 -1 nodes



Exactnhess

Atmost 1 level far from the lower bouqd
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® This is true if the cardinality of the functional support is 2”7

® More about this in a moment



Adding More Complexity
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® Can we make the circuit more complex?

cardinality of the functional support
® Add primary outputs as intermnar rnooc




Functional Support

® Simple example:

a+tc+d
Functional support ‘ Functional support
cardinality = 4 cardinality = 4
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Verifying the Functional Support

® Solution: Check the functional support of the composite circuit
% BDD techniques |
® SAT techniques @
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Construction Algorithm: v2.0

® Final construction algorithm:

Algorithm 2 Generation of depth-optimal multi-level circuits
with joint support.
INPUT: Complexity measure n
OUTPUT: Depth-optimal circuit with 2™ inputs.
A = Algorithm 1(n);
B = Algorithm 1(n);

share primary inputs of A and B;
create node n that joins roots of A and B;

assign node n to a random binary operator;
set n as primary output of the composite circuit;
verify the functional support of the composite circuit;

® Hard to synthesize circuits (non—monotone, non—DSD)

® At most 1 level far from the optimum



Exact Benchmark Example

® Example circuit with complexity measure = 4
® 16 inputs

® Result strashed into AIG

® The depth optimality is not guaranteed after strashing
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Experiments: Initial Circuits

® Starting implementation: BDD—collapsing of exact circuits
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ExperimentS' Sample Testing Flow
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Experimental Results

® Use of different delay synthesis techniques
& Starting point: collapsed BDD

® DSD, AIG, MIG, AlG—strashing of the exact circuit
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Experimental Results

® Same setup, reporting size values:

, TABLE II
Number of Nodes vs. Complexity SYNTHESIS EXPERIMENTS: LOGIC SIZE
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Conclusions and Future Research

® We presented a method to generate exact—depth multilevel benchmarks
@ Non-—trivial functionality: non—-monotone, non—DSD
® Benchmark generation is efficient
® Circuits with less than 210 inputs can be generated in matter of seconds

® Circuits with more than 210 inputs can be generated in matter of minutes

® Bottleneck is functional support check

® We proved an exponential gap between known optimal results and
heuristics

® More research is still needed in logic synthesis!

® Future research will consider:

@® More control on the implemented logic function in the exact benchmark

® Possibility to embed specific functions, or function classes, frequently appearing
in practical designs

® More scalable collapsing
® Hybrid BDD/SAT based collapsing 35



Questions?

Thank you for your attention!
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