
Multi-level Logic Benchmarks: An
Exactness Study

Luca Amaru∗,

Mathias Soeken†, Winston Haaswijk†, Eleonora Testa†, Patrick Vuillod∗,

Jiong Luo∗, Pierre-Emmanuel Gaillardon‡, Giovanni De Micheli†

∗Synopsys Inc., Design Group, Sunnyvale, California, USA

†Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

‡LNIS, University of Utah, Salt Lake City, Utah, USA

Motivation and Background

How to Build Exact (Multi-level) Benchmarks

Measuring the Exact-Heuristic Gap in Synthesis

Conclusions

Outline

Motivation and Background

How to Build Exact (Multi-level) Benchmarks

Measuring the Exact-Heuristic Gap in Synthesis

Conclusions

Outline

The EDA community heavily relies on benchmarks to evaluate
the performance of academic and commercial tools.

Logic optimization and synthesis are core EDA tasks where
benchmarking is essential.

Benchmarks in EDA

The first set of combinational benchmarks was reported in
ISCAS’85.

Sequential circuits were added in ISCAS’89.

In 1991, all benchmarks were collected and distributed under
the maintenance of the MCNC.

Historical Background

After MCNC, many other benchmark suites were proposed for
some classes of EDA tasks:

High level synthesis

FPGA

Physical design

Testing

….

In 2005, a new set of benchmarks for logic synthesis was
presented at IWLS.

In 2015, a new set of purely combinational benchmarks was
presented at IWLS.

Missing feature: Can we compare against exact synthesis
results for multi-level benchmarks?

Historical Background

Exact size benchmarks

TCAD paper 2007

LEKO and LEKU

LEKO: known optimum

LEKU known upper-bound

Exactness idea: replicate a small
circuit, in a special way, with a known
optimum solution

The composite circuit is also optimal

LEKU = LEKO collapsing + gate
decomposition

Exact-size Benchmarks

LEKO Example:
C5 circuit

Composite circuit:

LEKO G25

Exact-size Benchmarks

Motivation For This Work

If we want to measure the ultimate performance of logic synthesis
heuristics, we need exact results for multi-level logic benchmarks

Exact results and benchmarks for size do exist: LEKO & LEKU

In this work, we show how to build exact depth benchmarks

Measure the ultimate performance of delay-oriented synthesis
algorithms and tools

We provide a non-replicative method to build exact depth, multi-
level circuits, with:

Non-trivial functionality

Non-monotone

No disjoint support decomposition

Motivation and Background

How to Build Exact (Multi-level) Benchmarks

Measuring the Exact-Heuristic Gap in Synthesis

Conclusions

Outline

Exact Benchmarks

Problem: we want to measure the efficiency of heuristic delay
optimization techniques, for large circuits with known optimum
results

Thousands of I/0

Tens of thousands of gates

Potentially small delay (but large delay as starting point)

Solution: build synthetic benchmarks that are provably optimal

Avoid trivial cases

Avoid monotone circuits

Avoid disjoint support decomposable circuits

Add extra complexity

Why Synthetic Exact Benchmarks?

Question: why synthetic exact benchmarks?

Generating optimum circuits for arbitrary functions is an
intractable problem

Relates to the MCSP

Thought to be at least NP-hard, still unproven

Relax constraints to make the problem tractable

Impose complexity constraints on the function but not on the
actual functionality

The logic synthesis version of Heisenberg's uncertainty principle:

The more we want to know the functionality a priori, the harder it
becomes to know the exact circuit

Flexibility on
the

functionality

Hardness of
Exact Circuit
Generation

Intrinsic
Complexity of
the Problem

Balanced-tree Exact Circuits

How to build exact-depth
multi-level circuits?

Let’s start from a simple
concept and move from there

Balanced-tree circuits with
distinct inputs as leaves are
depth optimal by construction

Intuitively true, easy to prove

Are Balanced-tree Circuits
Depth Optimal?

a c db

The function realized cannot depend on all 2n variables: hence the
contradiction.

Proof by contradiction:

A balanced tree is a n level implementation for a 2n variables function.

Let’s assume it is possible to implement the same function in n-1 levels

4 variables case

Construction Algorithm: v1.0
Simple algorithm:

Generate a binary tree with n levels, 2n leaves, 2n - 1 nodes

Populate the nodes (randomly) with AND/OR binary operators

Populate the leaves with distinct primary inputs

The root of the tree is the primary output

Problem: the functions implemented are
trivial

Only monotone circuits

Specialized synthesis algorithms can
easily identify such structures

Breaking the monotone property:

Introduce negative unate and binate logic operators

NAND, NOR, XOR, XNOR binary operators

Complementation on the edges

Enforce the random operator population to have at least one binate
operator

Construction Algorithm: v1.5

Disjoint Support Decomposition
Addressed problem: the functions implemented are not monotone

Remaining problem: the functions implemented are still easy to
synthesize

Disjoint support decomposition is natively applicable here

Breaking the DSD Property

We need portions of logic with possibly joint support

Idea: merge depth optimal tree circuits with shared support!

Each tree is generated by the previous algorithm

Functions are non-monotone

The two trees can be combined with a top binary operator

XOR/XNOR are preferable

Breaking the DSD Property

Benchmark Properties

The circuit obtained has:

2n inputs

n +1 levels

2n -1 nodes

The function implemented is:

Non-monotone

Not directly DSD decomposable

Exactness

This is true if the cardinality of the functional support is 2n

More about this in a moment

Adding More Complexity

Can we make the circuit more complex?

Swap inputs of one tree

Add primary outputs as internal nodes

BAD NEWS: we may decrease the
cardinality of the functional support

Functional Support
Simple example:

ab+c+d ab’+ c ^ d

a+c+d
Functional support
cardinality = 4

Functional support
cardinality = 4

Functional support
cardinality = 3

Verifying the Functional Support
Solution: Check the functional support of the composite circuit

BDD techniques

SAT techniques

Final construction algorithm:

Hard to synthesize circuits (non-monotone, non-DSD)

At most 1 level far from the optimum

Construction Algorithm: v2.0

Exact Benchmark Example
Example circuit with complexity measure = 4

16 inputs

Result strashed into AIG

The depth optimality is not guaranteed after strashing

Motivation and Background

How to Build Exact (Multi-level) Benchmarks

Measuring the Exact-Heuristic Gap in Synthesis

Conclusions

Outline

Experiments: Initial Circuits
Starting implementation: BDD-collapsing of exact circuits

2n+1-1
nodes

2n inputs

2n levels

2n inputs

n+1 levels

2n < # nodes < 22^(n-1)

Experiments: Sample Testing Flow

Mapping onto:

AND (unit cost) OR (unit cost)

XOR (unit cost) INV (free)

AIG optimization

BDD collapsing

Experimental Results
Use of different delay synthesis techniques

Starting point: collapsed BDD

DSD, AIG, MIG, AIG-strashing of the exact circuit

Exponential gap between known
optimal results and heuristics

Same setup, reporting size values:

Exponential gap also for size

Limit for scalability: BDD
collapsing

1024 inputs already has a 0.6M
nodes BDD

After that, collapsing becomes
difficult and BDD-size is out of
scale

Experimental Results

Motivation and Background

How to Build Exact (Multi-level) Benchmarks

Measuring the Exact-Heuristic Gap in Synthesis

Conclusions

Outline

Conclusions and Future Research

33

We presented a method to generate exact-depth multilevel benchmarks

Non-trivial functionality: non-monotone, non-DSD

Benchmark generation is efficient

Circuits with less than 210 inputs can be generated in matter of seconds

Circuits with more than 210 inputs can be generated in matter of minutes

Bottleneck is functional support check

We proved an exponential gap between known optimal results and
heuristics

More research is still needed in logic synthesis!

Future research will consider:

More control on the implemented logic function in the exact benchmark

Possibility to embed specific functions, or function classes, frequently appearing
in practical designs

More scalable collapsing

Hybrid BDD/SAT based collapsing

Questions?

Thank you for your attention!

34

	Multi-level Logic Benchmarks: An Exactness Study
	Outline
	Outline
	Benchmarks in EDA
	Historical Background
	Historical Background
	Exact-size Benchmarks
	Exact-size Benchmarks
	Motivation For This Work
	Outline
	Exact Benchmarks
	Why Synthetic Exact Benchmarks?
	Balanced-tree Exact Circuits
	Are Balanced-tree Circuits �Depth Optimal?
	Construction Algorithm: v1.0
	スライド番号 16
	Disjoint Support Decomposition
	Breaking the DSD Property
	Breaking the DSD Property
	Benchmark Properties
	Exactness
	Adding More Complexity
	Functional Support
	Verifying the Functional Support
	スライド番号 25
	Exact Benchmark Example
	Outline
	Experiments: Initial Circuits
	Experiments: Sample Testing Flow
	Experimental Results
	スライド番号 31
	Outline
	Conclusions and Future Research
	Questions?

