

Workload-aware Static Aging Monitoring of Timing-critical Flip-flops

Arunkumar Vijayan, S. Kiamehr, F. Oboril, K. Chakrabarty, and M. B. Tahoori

INSTITUTE OF COMPUTER ENGINEERING (ITEC) - CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

Outline

Purpose and Motivation

- Background and Related Work
- Main Idea and Methodology
- Experimental Setup & Results
- Summary and Conclusion

Purpose and Motivation

- Technology scaling advances → Aggravates aging effect in transistors
- Aging
 - Bias Temperature Instability (BTI)
 - Increases threshold voltage of transistors
 - Increase in propagation delay of critical paths
 - Leads to timing failures in aging paths
- BTI based on type of stress
 - Dynamic BTI (DBTI)
 - Static BTI (SBTI)
- Static BTI
 - Long phases of inactivity in flip-flops
 - Accelerated aging stress during active operation
 - One year stress of DBTI = A few hour stress of SBTI
- Proposed Approach
 - Track SBTI by online monitoring
 - Trigger switching of critical flip-flops for relaxation

Outline

Purpose and Motivation

Background and Related Work

Main Idea and Methodology

Experimental Setup & Results

Background

- Bias Temperature Instability (BTI)
 - Major reliability concern
 - Increases threshold voltage of transistors
 - Translates to circuit-delay increase

- Stress phase and recovery phase
- Overall aging effect is non-critical in a short period of time
- Static BTI (SBTI)
 - Continuous stress phase
 - Accelerated aging effect

Ref: Velamala [ICCAD 2011]

Related Work

- Only DBTI is considered [Rao 2011 ICCD], [Bild 2012 TODAES], [Wang 2009 DATE]
 - Ignores workload profile of flip-flops in processors
- SBTI is considered only in specific scenarios.
 - Stand-by mode and sleep mode [Velamala 2011 ICCAD]
 - Ignore workload-specific stress scenarios in flip-flops
- SBTI in flip-flops [Golanbari 2015 ETS]
 - Ignores runtime variation in SBTI stress durations
 - Pessimistic approach

Overall Inference:

Runtime dependency in **SBTI** stress due to workload profile of flip-flops is largely ignored.

Outline

Purpose and Motivation

Background and Related Work

Main Idea and Methodology

Experimental Setup & Results

Main Idea

(Recovery)

- Monitor flip-flops and check the workload profile
- Detect long periods of inactivity in critical flip-flops
- Enforce recovery

- Reduce overhead for monitoring
 - Correlate Static Aging Phases
 - Monitor only a smaller subset of flip-flops as representative
 - Enforce switching in all critical flip-flops

Methodology

- Offline Characterization
 - Post-synthesis simulation
 - Using gate-level netlist of processor cores
 - Executing real workloads
 - Dumping logic values of circuit nodes for millions of clock cycles.
- Offline Correlation Analysis
 - Analysis of Static Aging Phases (SAPs) in simulation dump
 - Correlation of **SAPs** for timing-critical flip-flops
 - Grouping correlated flip-flops
 - Obtaining representative flip-flops
- Online Monitoring
 - Monitor representative flip-flops to find SAPs
 - Trigger alarm signal in critical scenarios
- Mitigation
 - Relax/switch flip-flops under severe SBTI

Offline Characterization

- Offline analysis of Static Aging Phases (SAPs) for different workloads
- Extracting correlation between SAPs across flip-flops
- Finding a small set of flip-flops to represent the circuit aging stress

Correlation-based Flip-flop Grouping

- Exploiting correlation in Static Aging Phases (SAPs) to reduce the number of RFFs
- Uses the time-points at which a flip-flop enters/leaves an SAP
- Time-points correlate \rightarrow SAPs correlate
- **SAP** observed on a flip-flop \rightarrow criticality to the correlated flip-flops

Correlation-based Flip-flop Selection

- Selection of flip-flops
 - Obtain correlated flip-flop groups
 - Select one flip-flop from each group
 - Representative flip-flops \rightarrow union of selected flip-flops

Online Monitoring

Online Monitoring: Critical Phase Detection

- Using Shadow Flip-flops (SFFs)
 - Each RFF is shadowed
 - Track RFFs online to identify critical workload phases

- Switching Event Detection
 - Using XOR gates
 - Tracks and reports switching events in RFFs
 - XOR gate: comparing value in current cycle and previous cycle
 - Generates a logic '1' for a switching event

Online Monitoring: Stress analysis and Recovery

- Records RFFs under static aging in each monitoring interval
 - Use critical flag register
 - Encode the aging status
 - One bit reserved for each RFF
 - Start with all 0s and set to 1 for the first switching event in an RFF
 - Send the criticality report for each monitoring interval

- Track critical static aging using software thread
 - Maintains a criticality Look-up Table
 - Receives criticality report
 - Trigger activation signal for mitigation

Switching Status of RFFs

Priority Encoder

Mitigation Measures

- Switching event in Flip-flops
 - Can trigger an immediate recovery from static aging
 - Releases stress of both flip-flops and logic gates
- Propose software-level solutions
 - Adds appropriate instructions in the execution queue (Eg: Pseudo-NOPs)
 - Exercise critically aged FFs
 - Reverses action and leaves no foot-print
- Overhead
 - Software-level solution
 - Minimal performance and area overhead

Outline

Purpose and Motivation

Background and Related Work

Main Idea and Methodology

Experimental Setup & Results

Experimental Setup

- Processors
 - Leon3
 - 32 bit embedded processor
 - 7 stage pipeline
 - SPRAC-V8 Instruction Set Architecture (ISA)
 - single core
 - Fabscalar
 - Superscalar out-of-order processor
 - 11 stage pipeline
 - Portable ISA (PISA)
 - single core
- Programs
 - six Mibench workloads for Leon3
 - six SPEC workloads for Fabscalar
- Library
 - Nangate 45nm

Results and Discussion

	Leon3	Fabscalar
Total FFs	2356	7563
FFs on critical path (<10% of maximum slack)	451 (19%)	536 (7%)
No. of critical FFs with static aging phases (Union)	42 (1.8%)	450 (6%)
No. of Representative FFs	7 (0.30%)	36 (0.48%)

Significant number of flip-flops are under static aging stress

Need to monitor only 7 flip-flops for Leon3 and 36 for Fabscalar

Impact of inactivity phase on monitoring overhead

Threshold (T_{sad_min}): minimum duration of inactivity considered for SBTI
Higher threshold → longer critical SAPs → fewer RFFs to monitor

Overheads

	Area Overhead	Power Overhead				
Leon3	0.22%	0.04%				
Fabscalar	0.09%	0.05%				

- FFs under SBTI switches rarely \rightarrow leakage power dominates
- Additional load at FFs \rightarrow no impact on circuit delay

Lifetime Improvement

- Defined as the reliably operating duration of a circuit within margin
- Comparing worst case scenarios with and without SAP monitoring
- (Dynamic + Static BTI) vs (Dynamic BTI alone)
- 1.9X lifetime improvement (for a minimum SAP of 3 million clock cycles)

Outline

Purpose and Motivation

Background and Related Work

Main Idea and Methodology

Experimental Setup & Results

- With technology scaling \rightarrow Significance of BTI
- Static BTI
 - Aggravates during phases of inactivity (SAP)
 - Need to be considered in worst-case analysis
- Our approach
 - Offline stage
 - Analyze static aging phases in flip-flops
 - Select timing critical and aging critical flip-flops
 - Correlation analysis to find representative flip-flops
 - Online stage
 - Monitor representative flip-flops to find static aging phases
 - Update the criticality in a software thread
 - Trigger mitigation actions based on severity of BTI
- Overheads
 - Less than 0.25% area and power overheads for Leon3 and fabsaclar
- Lifetime improvement
 - 1.9X lifetime improvement for a minimum SAP of 3M clock cycles.

Thank You!

<u>Q&A</u>

Workload-aware Static Aging Monitoring of Timing-critical Flip-flops

Back-up Slides

Results and Discussion

	Leon3						Fabscalar					
Total FFs	2356					7563						
FFs on critical path (<10% of maximum slack)	451					536						
Workloads	String search	qsort	susan	sha	basic math	crc32	gzip	gap	parser	vortex	mcf	bzip
No. of critical FFs	34	37	24	36	21	33	207	7	17	5	376	196
No. of critical FFs (Union)	42						450					
No. of correlated FF groups	2	5	2	1	3	2	17	5	10	3	12	16
No. of RFFs	7					36						

Significant number of flip-flops are under static aging stress

Can be represented using a few representative flip-flops

Results and Discussion

- SAP is considered when duration > constant threshold T_{sad min}
- Shows variation in number of representative flip-flops when SAP duration threshold increases
- To reduce the number of RFFs, concentrate on critical SAPs

Online Monitoring

- Representative Flip-flops
 - Each RFF is shadowed
 - Monitored online to identify critical workload phases
- Switching Event Detector
 - Tracks and reports switching events in RFFs
 - Represents aging stress relaxation
- Critical-Flag Register
 - Encodes flip-flops staying at SAP and flip-flops relaxed
 - Stores criticality report to send to software at regular intervals
- Tracking Software
 - Maintains a criticality Look-up Table
 - Live status of aging stress is stored
 - Trigger activation signal for critical flip-flops
- Mitigation
 - Exercise critical flip-flops in order to relieve stress
 - Suitable instructions (eg: pseudo-NOPs) are executed

- Existence of critical workload phases for logic designs
- Worst-case workload-specific aging scenarios due to SBTI can cause timing violations
- Reliability requirements can only be met by proper monitoring and mitigation techniques.
- Design of runtime monitoring hardware that raises a flag on criticality
- Achieved by monitoring a few number of representative flip-flops correlated with the critical flip-flops
- 1.9X reliability lifetime improvement with low area and power overhead