WIPE: Wearout Informed Pattern Elimination to Improve the Endurance of NVM-based Caches

Sina Asadi, Amir Mahdi Hosseini Monazzah, Hamed Farbeh, Seyed Ghassem Miremadi

Presented by:

Sina Asadi

Dependable System Laboratory (DSL)

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran 11155-9517

Tuesday, January 17, 2017 - Chiba/Tokyo, Japan

Outline

ASIA SOUTH PACIFIC DAGE SIGN AUTOMATION CONFERENCE

- Introduction
 - SRAM vs. NVMs
 - NVMs Challenges
- Related Work
 - Write Avoidance Techniques
 - Wear-Leveling Techniques
- Proposed WIPE Technique
 - Motivation
 - Proposed Technique
- Results
 - Endurance
 - Performance
 - Energy Consumption
- Conclusions

Introduction

DAGIA SOUTH PACIFIC DIACONTRACTOR

- SRAMs are previlant memory technology in cache memories [1]!
 - Low access latecy
 - High scalability
 - Design simplicity
- Emerging challenges appear in SRAMs with technology scaling trend
 - High static energy
 - Low density
 - Reliability challenges
 - Etc.

Introduction (Cont.)

- **DAGE** SIGN **INTOMATION** CONFERENCE
- A body of research has been triggered to find SRAMs alternative technologies
- NVMs are very promising between the alternative memory technologies [ITRS]
- In comparison with SRAMs, NVMs benefit from
 - Negligible static energy
 - Higher density
 - Higher scalability

But! The main common drawbacks of all NVMs are endurance limitation and high write energy consumption

Related Work

DACIFIC SIGN AUTOMATION CONFERENCE

- There are several studies tackle the mentioned NVMs challenges
 - From endurance point of view
 - From energy consumption point of view
- General approach to mitigate the NVMs endurance challenges
 - Reducing the number of write operations in NVM cells
- Cache write operations reduction techniques in literature
 - Write avoidance techniques [3][5-8]
 - Wear-leveling techniques [7][9][10]

Related Work – Write Avoidance

- Trying to eliminate write operations in the NVM cells
 - By eliminating the write operations in the cells that previously saved values are same as the new incoming values [11]!
 - By serving the write hot spot blocks from the memory cells with high endurance memory technology, i.e., SRAM [3][5][6][14]!
- These approaches can be implemented at
 - circuit-level [8]
 - architecture-level [3][5-10]

Related Work – Wear-Leveling

- ASIA SOUTH PACIFIC DACE IS IS N AUTOMATION CONFERENCE
- Trying to distribute write operations across the NVM cells and wear out them uniformly!
- Considering an NVM-based associative cache
 - The literature techniques can be categorized in four groups
 - Bit-level [7]
 - Intra-block level [15]
 - Intra-set level [9][10]
 - Inter-set level [9]

WIPE: Motivation

- DAGE SIGN DAGE SIGN NUMPERENCE
- A number of data patterns in L2 cache are noticibly written more frequently!
- From the endurance point of view
 - These patterns have more contribution in wearout of NVM cells.

-		-			
Benchmarks	32 bit data pattern (hexadecimal)			% of iterations in writes	
h264ref	0	159	0	159	14
xalancbmk	0	77	184	176	10
cactusADM	102	102	102	102	9
lbm	28	113	199	28	30
soplex	63	240	0	0	15

Examples of data patterns in different benchmarks

WIPE: Motivation (Cont.)

- Frequent write patterns can be classified in to two groups:
 - Deterministic Write Patterns (DWPs)
 - These patterns are common between all of the workloads
 - Can be determined by static profiling
 - Non-deterministic Write Patterns (NWPs)
 - These patterns are only appeared in specific workloads
 - Can't be determined by static profiling
 - May be changed during the execution of each workload!
- Both of DWPs and NWPs play an important role in wearing out of NVM cells!

WIPE: How it works?

- We propose a Wearout Informed Pattern Elimination (WIPE) technique
 - Dynamically eliminates both DWPs and NWPs write patterns across the workloads
 - To improve the endurance of Last level Cache (LLC)
- WIPE enabled cache architecture
 - Benefits from Management Unit (MU)
 - To dynamically track the write patterns
 - Benefits from T-Boxes
 - To store the frequent write patterns

ASIA SOUTH PACIFIC

WIPE: T-Box

- A T-Box contains a small Pattern Table
 - Storing seven most frequent DWPs and NWPs in recent write operations!
- WIPE use one T-Box for each word width of LLC block width!

- T-Box is updated by MU
- How write operation performs?
- How read operation performs?

Results: System Setup

- Simulation environment
 - Simulator: gem5
 - NVM: STT-RAM
 - Power and latency model
 - Cache: NVSim
 - Prepherals: Synopsys DC
 - Benchmarks: SPEC CPU2006
 - Considered baseline for evaluations
 - Conventional STT-RAM L2 cache

Simulation configurations				
	Parameter	Value		
	Frequency CPU Model	1 GHz arm_detailed		
L1 Caches (SRAM)	Associativity Size Block Size	4 32KB 64B		
L2 Caches (STT-RAM)	Associativity Size Block Size	8 256KB 64B		

ARM

% of Write Operations Reduction

Results: Endurance

- We evaluate the endurance improvement in WIPE by two metrics:
 - The maximum number of write operations between all of the cache blocks
 - 18% improvement observed on average
 - The average number of write operations over all of the cache blocks
 - 30% improvement observed on average

Benchmarks

Page • 14 WIPE: Wearout Informed Pattern Elimination to Improve the Endurance of NVM-based Caches

- **Results: Performance**
- WIPE does not impose any clock cycle(s) to read/ write operations!
- The only performance penalty in WIPE
 - Cache flushing operations
 - During pattern table updates
- On average, WIPE imposes only 0.2% performance overhead to system!

Results: Energy and Area

- WIPE significantly reduces the number of write operations in NVM cells
 - Write operations consume significant energy in NVM cells
 - WIPE significantly reduces dynamic energy consumption!
 - 29% dynamic energy consumption reduction observed!
- Static energy consumption overheads of WIPE are 8.4%, on average
- WIPE's peripheral circuits impose 9% area overhead to L2 cache design

Fotal Energy Consumption

■Dynamic ■ Static

Simulation results: Conclusion

- We propose endurance improvement technique for L2 cache (LLC)
 - Called "Wearout Informed Pattern Elimination (WIPE)"
- WIPE snoops the write operations in NVM-based cache
 - Determines the frequent write patterns (DWPs and NWPs)
 - Prevents DWPs and NWPs to be written in NVM-based cache
- WIPE improves endurance of NVM-based cache by 30%, on average.
- WIPE improves dynamic energy of NVM-based cache by 29%, on average.
- The static energy consumption overhead of WIPE is about 8.4%.
- The area overhead of WIPE peripheral circuits and modules is 9%.
- Performance overhead of WIPE is negligible.

Thanks for your attention!

Page • 17 WIPE: Wearout Informed Pattern Elimination to Improve the Endurance of NVM-based Caches