WIPE: Wearout Informed Pattern Elimination to Improve the Endurance of NVM-based Caches

Sina Asadi, Amir Mahdi Hosseini Monazzah, Hamed Farbeh, Seyed Ghassem Miremadi

Presented by:
Sina Asadi

Dependable System Laboratory (DSL)
Department of Computer Engineering
Sharif University of Technology
Tehran, Iran 11155-9517
Outline

- Introduction
 - SRAM vs. NVMs
 - NVMs Challenges
- Related Work
 - Write Avoidance Techniques
 - Wear-Leveling Techniques
- Proposed WIPE Technique
 - Motivation
 - Proposed Technique
- Results
 - Endurance
 - Performance
 - Energy Consumption
- Conclusions
Introduction

- SRAMs are prevalent memory technology in cache memories [1]!
 - Low access latency
 - High scalability
 - Design simplicity

- Emerging challenges appear in SRAMs with technology scaling trend
 - High static energy
 - Low density
 - Reliability challenges
 - Etc.
Introduction (Cont.)

- A body of research has been triggered to find SRAMs alternative technologies
- NVMs are very promising between the alternative memory technologies [ITRS]
- In comparison with SRAMs, NVMs benefit from
 - Negligible static energy
 - Higher density
 - Higher scalability

But!
The main common drawbacks of all NVMs are endurance limitation and high write energy consumption
Related Work

- There are several studies tackle the mentioned NVMs challenges
 - From endurance point of view
 - From energy consumption point of view

- General approach to mitigate the NVMs endurance challenges
 - Reducing the number of write operations in NVM cells

- Cache write operations reduction techniques in literature
 - Write avoidance techniques [3][5-8]
 - Wear-leveling techniques [7][9][10]
Related Work – Write Avoidance

- Trying to eliminate write operations in the NVM cells
 - By eliminating the write operations in the cells that previously saved values are same as the new incoming values [11]!
 - By serving the write hot spot blocks from the memory cells with high endurance memory technology, i.e., SRAM [3][5][6][14]!

- These approaches can be implemented at
 - circuit-level [8]
 - architecture-level [3][5-10]
Related Work – Wear-Leveling

- Trying to distribute write operations across the NVM cells and wear out them uniformly!

- Considering an NVM-based associative cache
 - The literature techniques can be categorized in four groups
 - Bit-level [7]
 - Intra-block level [15]
 - Intra-set level [9][10]
 - Inter-set level [9]

WIPE: Wearout Informed Pattern Elimination to Improve the Endurance of NVM-based Caches
WIPE: Motivation

- A number of data patterns in L2 cache are noticeably written more frequently!
- From the endurance point of view
 - These patterns have more contribution in wearout of NVM cells.

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>32 bit data pattern (hexadecimal)</th>
<th>% of iterations in writes</th>
</tr>
</thead>
<tbody>
<tr>
<td>h264ref</td>
<td>0 159 0 159</td>
<td>14</td>
</tr>
<tr>
<td>xalancbmk</td>
<td>0 77 184 176</td>
<td>10</td>
</tr>
<tr>
<td>cactusADM</td>
<td>102 102 102 102</td>
<td>9</td>
</tr>
<tr>
<td>lbm</td>
<td>28 113 199 28</td>
<td>30</td>
</tr>
<tr>
<td>soplex</td>
<td>63 240 0 0</td>
<td>15</td>
</tr>
</tbody>
</table>
Frequent write patterns can be classified into two groups:

- Deterministic Write Patterns (DWPs)
 - These patterns are common between all of the workloads
 - Can be determined by static profiling
- Non-deterministic Write Patterns (NWPs)
 - These patterns are only appeared in specific workloads
 - Can’t be determined by static profiling
 - May be changed during the execution of each workload!

Both of DWPs and NWPs play an important role in wearing out of NVM cells!
WIPE: How it works?

- We propose a Wearout Informed Pattern Elimination (WIPE) technique
 - Dynamically eliminates both DWPs and NWPs write patterns across the workloads
 - To improve the endurance of Last level Cache (LLC)

WIPE enabled cache architecture

- Benefits from Management Unit (MU)
 - To dynamically track the write patterns
- Benefits from T-Boxes
 - To store the frequent write patterns
WIPE: T-Box

- A T-Box contains a small Pattern Table
 - Storing seven most frequent DWPs and NWPs in recent write operations!
- WIPE use one T-Box for each word width of LLC block width!
- T-Box is updated by MU
- How write operation performs?
- How read operation performs?
Results: System Setup

- Simulation environment
 - Simulator: gem5
 - NVM: STT-RAM
 - Power and latency model
 - Cache: NVSim
 - Prepherals: Synopsys DC
 - Benchmarks: SPEC CPU2006
 - Considered baseline for evaluations
 - Conventional STT-RAM L2 cache

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Caches (SRAM)</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1 GHz</td>
</tr>
<tr>
<td>CPU Model</td>
<td>arm_detailed</td>
</tr>
<tr>
<td>Associativity</td>
<td>4</td>
</tr>
<tr>
<td>Size</td>
<td>32KB</td>
</tr>
<tr>
<td>Block Size</td>
<td>64B</td>
</tr>
<tr>
<td>L2 Caches (STT-RAM)</td>
<td></td>
</tr>
<tr>
<td>Associativity</td>
<td>8</td>
</tr>
<tr>
<td>Size</td>
<td>256KB</td>
</tr>
<tr>
<td>Block Size</td>
<td>64B</td>
</tr>
</tbody>
</table>
Results: Endurance

- We evaluate the endurance improvement in WIPE by two metrics:
 - The maximum number of write operations between all of the cache blocks
 - 18% improvement observed on average
 - The average number of write operations over all of the cache blocks
 - 30% improvement observed on average
Results: Performance

- WIPE does not impose any clock cycle(s) to read/write operations!

- The only performance penalty in WIPE
 - Cache flushing operations
 - During pattern table updates

- On average, WIPE imposes only 0.2% performance overhead to system!
Results: Energy and Area

- WIPE significantly reduces the number of write operations in NVM cells
 - Write operations consume significant energy in NVM cells
 - WIPE significantly reduces dynamic energy consumption!
 - 29% dynamic energy consumption reduction observed!
- Static energy consumption overheads of WIPE are 8.4%, on average
- WIPE’s peripheral circuits impose 9% area overhead to L2 cache design
Simulation results: Conclusion

- We propose endurance improvement technique for L2 cache (LLC)
 - Called “Wearout Informed Pattern Elimination (WIPE)”

- WIPE snoops the write operations in NVM-based cache
 - Determines the frequent write patterns (DWPs and NWPs)
 - Prevents DWPs and NWPs to be written in NVM-based cache

- WIPE improves endurance of NVM-based cache by 30%, on average.

- WIPE improves dynamic energy of NVM-based cache by 29%, on average.

- The static energy consumption overhead of WIPE is about 8.4%.

- The area overhead of WIPE peripheral circuits and modules is 9%.

- Performance overhead of WIPE is negligible.
Thanks for your attention!