
L.C.SmithCollege of Engineering 
and Computer Science

Towards Acceleration of Deep Convolutional 
Neural Networks using Stochastic Computing

Ji Li University of Southern California
Ao Ren Syracuse University
Zhe Li Syracuse University
Caiwen Ding Syracuse University
Bo Yuan City University of New York
Qinru Qiu Syracuse University
Yanzhi Wang Syracuse University



Outline

 Introduction
 Background

 Deep Convolutional Neural Network (DCNN)
 Stochastic Computing (SC)

 Hardware Design and Optimization
 Basic Function Blocks
 Feature Extraction Block Design & Optimization
 Layer-wise Design

 Reconfiguration and Scalability
 Results
 Conclusion



1. Introduction

 Deep Learning, as an important branch of machine learning 
and neural network, is playing an increasingly important role 
in a number of fields like image classification, computer vision, 
natural language processing, etc.
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1. Introduction 

 With recent advancing of wearable devices and Internet of Things (IoTs), it 
becomes very attractive to implement the deep learning systems onto 
embedded and wearable devices.



1. Introduction 

Challenges
• Presently, executing the software-based deep learning systems 

requires high-performance server clusters in practice, 
restricting their widespread deployment on the personal and 
mobile devices. 

• In order to overcome this issue, considerable research efforts 
have been conducted in the context of developing highly-
parallel and specific hardware designs, utilizing GPGPUs, 
FPGAs, and ASICs.



1. Introduction 

 Stochastic Computing
• It’s a data representation and processing technique, which uses 

a bit-stream to represent a number within [-1, 1] by counting 
the number of ones in the bit-stream.

• It has high potential for implementing deep neural network 
with high scalability and ultra-low hardware footprint. 



1. Introduction 

Our work:
• Our main focus is on deep convolutional neural network.
• We investigate and explore various implementations of basic 

functions required by DCNNs.
• We propose the implementations of feature extraction blocks 

by selectively compose the basic function blocks and jointly 
optimize them.

• We construct a LeNet5 in stochastic computing.



2. Background

2.1 Deep Convolutional Neural Network (DCNN)

2.2 Stochastic Computing (SC)



2.1 Deep Convolutional Neural Network (DCNN)

2.1.1 DCNN Overview

2.1.2 Basic Operations
-Convolution
-Pooling
-Activation Function



2.1.1 DCNN Overview

• Deep convolutional neural networks are biologically inspired 
variants of multilayer perceptrons (MLPs) by mimicking the 
animal visual mechanism. 



2.1.1 DCNN Overview

• A DCNN is in the simplest case a stack of three types of 
layers: Convolutional Layer, Pooling Layer, and Fully 
Connected Layer.



2.1.2 DCNN Basic Operations

• The main operations in DCNN are: convolution, pooling, and 
activation.



2.1.2 DCNN Basic Operations

• Convolution 
-The Convolutional layer is the core building block of DCNN, and the 
main operation is the convolution that calculates the dot-product of 
receptive fields and a set of learnable filters (or kernels).



2.1.2 DCNN Basic Operations

• Pooling
-Nonlinear down samplings. 
-To reduce the dimension of data. 
-Max pooling and average pooling.



2.1.2 DCNN Basic Operations

• Activation
-Nonlinear transformation. 
-Rectified Linear Unit (ReLU) f(x) = max(0, x); Sigmoid function f(x) = 
(1+e−x)−1; and hyperbolic tangent (tanh) function f(x) = 2/(1+e−2x)−1. 



2.2 Stochastic Computing (SC)

2.2.1 Data Representation

2.2.2 Arithmetic Calculations 



2.2.1 Data Representation

 Stochastic computing represents a data using a bit-stream by 
counting the number of ones in the stream.

 Unipolar
-Represent data in the range of [0, 1].
-Example: 00100101 represents P(x=1)=3/8=0.375

 Bipolar
-Represent data in the range of [-1, 1].
-P(X=1)=(x+1)/2
-Example: 00100101 represents x = (3/8) * 2 -1= - 0.25



2.2.2 Arithmetic Calculations

 Multiplication.

 Addition.
c=2P(C=1)–1
=2(1/2(P(A=1)+1/2P(B=1))–1
=1/2(2P(A=1)–1)+(2P(B=1)–1))=1/2(a+b)



3. Hardware Design and Optimization

3.1 Basic Function Blocks

3.2 Feature Extraction Block Design & Optimization



3.1 Basic Function Blocks

3.1.1 Convolution (Inner Product) Block Design

3.1.2 Pooling Block Design

3.1.3 Activation Block Design



3.1.1 Convolution (Inner Product) Block Design

 Convolution (Inner Product) = Multiplications + Addition



3.1.1 Convolution (Inner Product) Block Design

 Multiplication: XNOR 

 Addition
-Multiplexer (MUX)-Based
-Approximate Parallel Counter (APC)-Based



3.1.1 Convolution (Inner Product) Block Design

 MUX-Based Adder

• Advantages: 
-Low Hardware footprint, low power
-Easy to implement

• Disadvantages:
-Relatively low accuracy
-Natural down-scaling



3.1.1 Convolution (Inner Product) Block Design

 APC-Based Adder
-Perform an addition by counting the 
number of ones.

• Advantages: 
-Relatively high accuracy
-No down-scaling issue

• Disadvantages:
-Relatively high hardware footprint



3.1.2 Pooling Block Design

Average Pooling
-Calculate the average value of bit-stream inputs

• MUX-based inner product block
-Four to one MUX
-Naturally perform average calculation

• APC-based inner product block
-Four to one MUX
-Or conventional binary component



3.1.2 Pooling Block Design

Max Pooling
-Select the bit-stream that represents the maximum value

 Novel Max Pooling Scheme



3.1.3 Activation Block Design

 Hyperbolic tangent (tanh)
-Easy to implement with finite state machine in SC domain



3.1.3 Activation Block Design

 Binary Hyperbolic Tangent (Btanh)
-Receive binary input and generate stochastic bit-stream.
-Connect with APC-based inner product block.
-The same idea with FSM.
-Actually implemented with binary calculation components.



3.2 Feature Extraction Block Design & Optimization

 Inner Product Block-Pooling Block-Activation Block



3.2 Feature Extraction Block Design & Optimization

 Four types of feature extraction blocks (FEBs)
-MUX-Avg-Stanh
-MUX-Max-Stanh
-APC-Avg-Btanh
-APC-Max-Btanh

 Jointly Optimization
-Influence factors: input size, bit-stream length, and the inaccuracy
introduced by the previous connected block 
-A series of joint optimizations are performed on each type of feature 
extraction block to achieve the optimal performance. 



3.3 Layer-wise Design

 Different layer has different sensitivities to errors

 Different layer adopts different feature extraction blocks



5. Results & Discussions

 Accuracy comparison between different types of FEBs



5. Results & Discussions

 Hardware performance comparison between different types of FEBs



5. Results & Discussions

 Comparison among Various SC-DCNN Designs Implementing LeNet 5



5. Results & Discussions

 Comparison among with existing hardware platforms



Thank You !
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