
Hybrid Analysis of SystemC Models
for Fast and Accurate Parallel Simulation

Tim Schmidt, Guantao Liu, and Rainer Dömer
Center for Embedded and Cyber-physical Systems

University of California, Irvine, USA

(c) 2017 T. Schmidt et. al. , CECS 2

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel SystemC simulation is available

• Reduces simulation time immensely
• Highly applicable for Network-on-Chip

applications

• Example:

Tile 1,1 Tile 1,2

Tile 2,1 Tile 2,2

Traditional Parallel Simulation

wait()
statements

Traditional Parallel Simulation

• Compiler driven strategy
for parallelization
1. Identify the module

hierarchy

(c) 2017 T. Schmidt et. al. , CECS 3

Top

Stimulus MonitorNoc

Tile1 Tile2 Tile3 Tile4
...

Traditional Parallel Simulation

• Compiler driven strategy
for parallelization
1. Identify the module

hierarchy
2. Partition

the simulation threads
in segments

(c) 2017 T. Schmidt et. al. , CECS 4

SystemC Compiler

RISC

systemc.hModel.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…

SystemC
Model

Seg 1

Seg 2 Seg 3

Seg 6Seg 4

Seg 5

Seg 0

wait()

wait()

wait()

Traditional Parallel Simulation

• Compiler driven strategy
for parallelization
1. Identify the module

hierarchy
2. Partition

the simulation threads
in segments

(c) 2017 T. Schmidt et. al. , CECS 5

SystemC Compiler

RISC

systemc.hModel.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…

SystemC
Model

0 1 2 3 4 5 6
0
1
2
3
4
5
6

wait()

wait()

Traditional Parallel Simulation

• Compiler driven strategy
for parallelization
1. Identify the module

hierarchy
2. Partition

the simulation threads
in segments

(c) 2017 T. Schmidt et. al. , CECS 6

SystemC Compiler

RISC

systemc.hModel.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…

SystemC
Model

Compilation,
Simulation

Model
_par.cpp

Parallel
C++ Model

Traditional Parallel Simulation

• Compiler driven strategy
for parallelization
1. Identify the module

hierarchy
2. Partition

the simulation threads
in segments

3. Instrument source code
for the parallel simulator

(c) 2017 T. Schmidt et. al. , CECS 7

int conflict_table[x][y];

...

void thread()
{
 ...
 wait(... , Segment ID);
 ...
}

...

C++ Model

Outline

• Problem Definition
• Hybrid Analysis
• Library Handling
• Experiments
• Conclusion

(c) 2017 T. Schmidt et. al. , CECS 8

Problem Definition

Parallel simulation requires static analysis
1. Designs with libraries cannot be analyzed

(source code needed)
2. Dynamic resizable designs cannot be considered

(new operator)

(c) 2017 T. Schmidt et. al. , CECS 9

...

...

...

... ...

...

Basic idea:
• We replace static analysis with hybrid analysis
• We introduce dedicated library handling

Hybrid Analysis

• Hybrid Analysis = Dynamic Analysis + Static Analysis

• Dynamic Analysis
– Simulate design until evaluation phase
– Write design structure in a file

• Static Analysis
– Perform regular static analysis
– Use dynamic analysis results to support static

(c) 2017 T. Schmidt et. al. , CECS 10

Hybrid Analysis

(c) 2017 T. Schmidt et. al. , CECS 11

1. Instrumented design for
Dynamic Design Analysis

RISC Instrumentor

g++

design.cpp with command line parameters

instrumented_design.cpp

RISC -
Dynamic Analysis

SystemC

instrumented_design.out

SystemC
Dynamic
Design

Analysis
instrumented_design.cpp

...

void print_variables(FILE *file)
{
 fprintf(file,
 "reference_@%p,",
 &reference_);

 fprintf(file,
 "variable_$%p,",
 &variable_);
}

void print_ports(FILE *file)
{ ... }

...

Hybrid Analysis

(c) 2017 T. Schmidt et. al. , CECS 12

1. Instrumented design for
Dynamic Design Analysis

2. Execute instrumented design RISC Instrumentor

g++

design.cpp with command line parameters

instrumented_design.cpp

RISC -
Dynamic Analysis

SystemC

instrumented_design.out

SystemC

instrumented_design.out
 with command line parameters

dynamic_analysis.dir

Dynamic
Design

Analysis

top:0x111(
 chnl1:0x222:MyChannelType,
 var:0x333 mod1:0x444(
 var:0x555,
 ref:0x333,port:0x222))

dynamic_analysis.dir

Hybrid Analysis

(c) 2017 T. Schmidt et. al. , CECS 13

1. Instrumented design for
Dynamic Design Analysis

2. Execute instrumented design
3. Perform Static Conflict Analysis

RISC Instrumentor

g++

design.cpp with command line parameters

instrumented_design.cpp

RISC -
Dynamic Analysis

SystemC

instrumented_design.out

SystemC

instrumented_design.out
 with command line parameters

dynamic_analysis.dir

RISC Parallelizer

g++

instrumented_design.cpp

RISC -
Parallel SystemC

SystemC

parallel_design.out

Dynamic
Design

Analysis

Static
Conflict
Analysis

Library Handling

• Libraries provide only interfaces, no source code
• Only header files are available

• Static analysis cannot identify wait statements in libraries
• Static analysis cannot instrument wait statements in libraries

• We provide annotation scheme for functions
Example:
#pragma RISC no-wait
void foo();

(c) 2017 T. Schmidt et. al. , CECS 14

How can we pass information to the simulator
without modify the library?

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 15

send(...)

receive()wait(...)

printf()

Sender Receiver

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 16

• User domain source code is available

send(...)

receive()wait(...)

User Domain User Domain

printf()

Sender Receiver

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 17

• 3rd party libraries provide only interfaces
• Changes and instrumentation is not possible

send(...)

receive()wait(...)

User Domain User Domain
3rd Party
IP Library

printf()

Sender Receiver

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 18

• Standard libraries provide only interfaces
• Changes and instrumentation is not possible

send(...)

receive()wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 19

• RISC simulator with support for parallel SystemC

send(...)

receive()wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC -
Parallel SystemC

Library

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 20

send(...)

receive()wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC -
Parallel SystemC

Library

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 21

send(...)

receive()wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC -
Parallel SystemC

Library

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 22

• wait() calls are synchronization points between
the model and the simulator

send(...)

receive()

wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC -
Parallel SystemC

Library
void wait()
{ ... }

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 23

send(...) receive()

wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC -
Parallel SystemC

Library
void wait()
{ ... }

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 24

• RISC needs the segment ID to schedule the next segment
• We cannot instrument library code

send(...) receive()
wait(ID)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC -
Parallel SystemC

Library
void wait(ID)
{ ... ID ... }

Library Handing

(c) 2017 T. Schmidt et. al. , CECS 25

• We attach the upcoming segment ID with the thread local data
• We instrument setID() and getID()
• wait() calls do not change anymore

setID(42)
send(...)

setID(43)
receive()

wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC -
Parallel SystemC

Library
void wait()
{ ... = getID(); ... }

Experiments

(c) 2017 T. Schmidt et. al. , CECS 26

Time (in sec.) Speedup
5x5 160.20 53.77 2.56x 3.58x 3.25x 2.97x
6x6 126.53 29.09 2.80x 4.88x 5.04x 4.34x
7x7 117.46 24.11 2.32x 3.91x 5.01x 4.87x
8x8 108.40 16.96 2.07x 4.12x 6.05x 6.39x
Particles seq. 60k par. 60k 10k 20k 40k 60k

• Simulation of a Network-on-Chip particle simulator
• 65 modules
• 176 channels
• # cores 5x5 à 8x8
• # particles 10k à 60k

• Simulation Host:
Intel Xeon E3-1240 with 4 cores and 2 threads per core

• Simulation results 100% accurate with sequential simulation

Tile 1,1 Tile 1,2 Tile 1,y

Tile 2,1 Tile 2,2 Tile 2,y

Tile x,1 Tile x,2 Tile x,y

...

...

...

... ...

...

Conclusion

• Traditional Parallel Discrete Event Simulation has
limitations

• We propose
– Hybrid analysis of models
– Library support for parallel simulation

• Our experiments
– NoC particle simulator
– Flexible number of cores 5x5 à 8x8
– Maintaining 100% accuracy
– Speedup up to 6.39x

(c) 2017 T. Schmidt et. al. , CECS 27

