

Virtual Prototyping of Smart Systems through *Automatic Abstraction* and *Mixed-Signal Scheduling*

> Michele Lora, Enrico Fraccaroli, **Franco Fummi** Department of Computer Science, University of Verona, Italy

Outline Smart systems

- · Objectives and motivations
- · Guiding Idea:
 - State of the art digital model abstraction
 - An analog model abstraction technique
 - A mixed-signal scheduling methodology
- Analog abstraction
- Mixed-signal scheduling
- Experimental setup and results
- Conclusions

	Analog Abstraction (1/7)								
 Guiding ide Abstraction 	a: on from Circuit Level to Func	tional Level							
Level	Modeling Primitives	Implications							
Functional	Mathematical signal flow de- scription per block, con- nected in signal flow diagram	No internal block structure; conservation laws need not be satisfied on pins							
Behavioral	Mathematical description (equations, procedures) per block	No internal block structure; conservation laws must be sat- isfied on pins							
Macromodel	Simplified circuit with con- trolled sources	Spatially unrelated to ac- tual circuit; conservation laws must be satisfied							
Circuit	Connection of SPICE primi- tives	Spatially one-to-one related to actual circuit; conservation laws must be satisfied							
	L. Scheffer, L. Lavagno, and G. Martin, EDA for IC Implementation, Circuit Design, and Process Technology. CRC Taylor & Francis, 2006.								
 Consider of interes 	only relations with semantic r at and the inputs of the model	meanings between a value I							
17 Jan. '17	ASP-DAC	9							

Experimental Results (1/3)								
Proposed methodology has been implemented – in OCCAM (Ordinary C++-Code for Analog Models) – on top of EDALab's HIFSuite framework								
Benchmark	Relations	Inputs	Outputs	Lines of Code	Abstraction Time (s)			
RC1	2	1	1	17	0.009			
IN2	3	2	1	21	0.012			
PIFilter	4	1	1	21	0.008			
IN3	5	3	1	31	0.015			
Voltage Limiting Operational Amplifier	2	1	1	33	0.007			
Ideal Operational Amplifier	6	1	1	31	0.009			
Transimpedence Amplifier	3	1	1	33	0.007			
RC5	10	1	1	42	0.014			
RC10	20	1	1	67	0.026			
RC20	40	1	1	117	0.078			
MEMS Accelerometer	66	10	8	123	0.020			
MEMS Mechanical Actuator	28	1	1	408	0.084			
17 Jan. '17		ASP-DAC			20			

		E×	peri	nenta	al Re	sults	(2/3)			
Benchmark	Heterogeneous (Analog: Verilog-AMS)		SystemC-AMS/ELN (ABACUS automatic translation)			C++				
						(OCCAM automatic abstraction)				
	Component Platform		Component Platform		form	Component		Platform		
	time (s)	time (s)	time (s)	speed-up (x)	time (s)	speed-up (x)	time (s)	speed-up (x)	time (s)	speed-up (x)
RC1	3365.87	4972.86	20.67	162.84	1457.66	3.41	1.59	2120.11	154.73	32.14
IN2	3419.13	4934.58	25.23	135.51	1558.97	3.17	2.77	1234.34	157.02	31.43
PIFilter	3475.80	4990.13	31.14	111.61	1599.70	3.12	2.27	1533.95	153.34	32.54
IN3	3575.54	5070.32	31.25	114.43	1692.64	3.00	4.06	879.83	156.90	32.32
Voltage Limiting Operational Amplifier	3138.62	4712.55	Not applicable due to nonlinearities			3.62	867.29	159.73	29.50	
Ideal Operational Amplifier	3499.48	5024.72	30.21	115.83	1599.52	3.14	1.77	1982.30	156.42	32.12
Transimpedence Amplifier	3438.67	5114.33	Not applicable due to nonlinearities			1.91	1801.78	154.92	33.01	
RC5	3438.38	5051.94	43.46	79.11	1722.90	2.93	2.87	1200.03	160.61	31.45
RC10	3584.68	5165.78	76.15	47.07	2076.72	2.49	5.86	612.00	163.39	31.62
RC20	3879.56	5358.37	129.34	29.99	2631.01	2.04	16.36	237.18	177.93	30.12
MEMS Accelerometer	4196.61	5723.16	181.80	23.08	3936.65	1.45	11.60	361.76	168.78	33.91
MEMS Mechanical Actuator	8078.35	9769.48	Not applicable due to nonlinearities			114.64	70.47	275.53	35.46	
17 Jan. '17				ASP	P-DAC					21

