CEGAR-based EF Synthesis of Boolean Functions with an Application to Circuit Rectification Heinz Riener, Rüdiger Ehlers, and <u>Goerschwin Fey</u> German Aerospace Center, Bremen, Germany DFKI GmbH, Germany University of Bremen, Germany

Knowledge for Tomorrow

CEGAR-based Exist-Forall Synthesis of Boolean functions

• Does a Boolean function F exist with respect to a correctness specification Q such that Q(X, F(X)) holds for all possible values of X?

$\exists F: \forall X: Q(X, F(X))$

- Challenge:
 - Not a SAT-problem: Exist-forall (EF) quantifier-alternation
 - Not a QBF-problem: *F* is a second-order variable (domain is the set of all Boolean functions)

• Contribution:

- CEGAR-based loop for computing a model for *F* in a normal form representation of bounded size using incremental Boolean learning
- Demonstration of the approach in the context of circuit rectification, e.g., applicable for ECO-synthesis

CEGAR-based EF Synthesis of Boolean functions

Is it valid with respect to a specification **for all** possible inputs?

CEGAR-based EF Synthesis of Boolean functions

Q encodes a (logic) correctness criterion (specification)

CEGAR-based EF Synthesis of Boolean functions

Q encodes a (logic) correctness criterion (specification)

- Many techniques are possible we use **bounded synthesis + Boolean learning**
- Synthesizes a Boolean function in a normal form representation from counterexamples (= input-output samples)
- 1. Start from a normal form representation of bounded size with open parameters to be determined
- 2. Use the counterexamples to infer the parameters
- 3. Refine when new counterexamples are provided
- SAT: parameters have been found to "concretize" the normal form expression
- **UNSAT**: no parameters exist (within the bound)
 - Issue: either no function at all exists or the bounds need to be relaxed
- **Incremental approach**: keeps the SAT-solver's state alive, add constraints for new counterexamples

- Consider Sum-Of-Products (SOP) / Disjunctive Normal Form (DNF)
 - Other normal forms are possible too, but different formalization required
- Suppose that F(X) is a Boolean function in SOP to be determined over variables
 X: = x₁, ..., x_n and restricted to at most m cubes
- Construct a SAT-problem over 2nm Boolean variables: $p_{j,l}$ and $q_{j,l}$ for $1 \le j \le m$ and $1 \le l \le n$, where

$$p_{j,l} \coloneqq \begin{cases} 1, & x_l \text{ appears in cube } j \\ 0, & \text{otherwise} \end{cases}$$
 and $q_{j,l} \coloneqq \begin{cases} 1, & \neg x_l \text{ appears in cube } j \\ 0, & \text{otherwise.} \end{cases}$

- If $p_{j,l} = 0$ and $q_{j,l} = 0$ then variable x_l does not appear in cube j
- If $p_{j,l} = 1$ and $q_{j,l} = 1$ then cube j cancels out

• Suppose that $D \coloneqq (\hat{X}_1, \hat{R}_1), \dots, (\hat{X}_p, \hat{R}_p)$ is a database of input-output samples (= a partially-specified truth table), assignments $P \coloneqq p_{1,1}, \dots, p_{m,n}$ and $Q \coloneqq q_{1,1}, \dots, q_{m,n}$ are obtained by solving

$$\hat{P}, \hat{Q} \models \bigwedge_{(\hat{X}, \hat{R}) \in D} \begin{cases} N(\hat{X}, P, Q), & \hat{R} = 0\\ P(\hat{X}, P, Q), & \hat{R} = 1 \end{cases}$$

with

$$N(x_1, \dots, x_n; p_{1,1}, \dots, p_{m,n}; q_{1,1}, \dots, q_{m,n}) \coloneqq \bigwedge_{j=1}^m \bigvee_{l=1}^n \text{ITE}(x_l, q_{j,l}, p_{j,l})$$

Each cube must disagree with at least one value of the sample

and

Ρ

$$(x_1, \dots, x_n; p_{1,1}, \dots, p_{m,n}; q_{1,1}, \dots, q_{m,n}) \approx \exists z_1, \dots, z_m: (\bigvee_{j=1}^m z_j) \land (\bigwedge_{j=1}^m \bigwedge_{l=1}^n \neg z_j \lor \neg ITE(x_l, q_{j,l}, p_{j,l}))$$

At least one cube must be satisfied

For all satisfied cubes, p and q have to be consistent with values of the sample

• Concrete assignments to $P \coloneqq p_{1,1}, \dots, p_{m,n}$ and $Q \coloneqq q_{1,1}, \dots, q_{m,n}$ concretize the generic expression

$$F(x_1, \dots, x_n; p_{1,1}, \dots, p_{m,n}; q_{1,1}, \dots, q_{m,n})$$

$$\coloneqq \bigvee_{j=1}^m \bigwedge_{l=1}^n \operatorname{ITE}(p_{j,l}, x_l, \operatorname{true}) \wedge \operatorname{ITE}(q_{j,l}, \neg x_l, \operatorname{true})$$

to an SOP-expression

ITE-expressions are simplified by constant propagation in a preprocessing step

SOP representation of Boolean functions

• Consider completely-specified Boolean functions over 4 variables $(2^{2^4} = 65536)$ in SOP representation

SOP representation of Boolean functions

• Consider completely-specified Boolean functions over 4 variables $(2^{2^4} = 65536)$ in SOP representation

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	î
	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	1
	0	0	1	1	0
	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	0
	1	1	1	0	0
	1	1	1	1	0

Evolution of SOP-expression:

Database:

id	\widehat{x}_4	\widehat{x}_3	\hat{x}_2	\widehat{x}_1	Ŷ	
	0	0	0	0	0	
	0	0	0	1	0	
	0	0	1	0	0	
	0	0	1	1	0	
	0	1	0	0	0	
1.	0	1	0	1	0	
	0	1	1	0	0	
	0	1	1	1	0	
	1	0	0	0	0	
	1	0	0	1	0	
	1	0	1	0	0	
	1	0	1	1	0	
	1	1	0	0	0	
	1	1	0	1	0	
	1	1	1	0	0	
	1	1	1	1	0	

Evolution of SOP-expression:

id	SOP
1.	false

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r	
	0	0	0	0	0	
	0	0	0	1	0	
2.	0	0	1	0	1	
	0	0	1	1	0	
	0	1	0	0	0	
1.	0	1	0	1	0	
	0	1	1	0	0	
	0	1	1	1	0	
	1	0	0	0	0	
	1	0	0	1	0	
	1	0	1	0	0	
	1	0	1	1	0	
	1	1	0	0	0	
	1	1	0	1	0	
	1	1	1	0	0	
	1	1	1	1	0	

Evolution of SOP-expression:

id	SOP
1.	false

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	î	
	0	0	0	0	1	
	0	0	0	1	0	
2.	0	0	1	0	1	
	0	0	1	1	0	
	0	1	0	0	1	
1.	0	1	0	1	0	
	0	1	1	0	1	
	0	1	1	1	0	
	1	0	0	0	1	
	1	0	0	1	0	
	1	0	1	0	1	
	1	0	1	1	0	
	1	1	0	0	1	
	1	1	0	1	0	
	1	1	1	0	1	
	1	1	1	1	0	

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
	0	0	1	1	0
	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$

Correctly chosen

Erroneously chosen

Correctly chosen Erroneously chosen

Fixed sample

Incremental learning of Boolean functions by example

Database:

id	\widehat{x}_4	\widehat{x}_3	\hat{x}_2	\widehat{x}_1	\hat{r}	
3.	0	0	0	0	0	
	0	0	0	1	0	
2.	0	0	1	0	1	
	0	0	1	1	1	
	0	1	0	0	1	
1.	0	1	0	1	0	
	0	1	1	0	1	
	0	1	1	1	1	
	1	0	0	0	0	
	1	0	0	1	0	
	1	0	1	0	1	
	1	0	1	1	1	
	1	1	0	0	0	
	1	1	0	1	0	
	1	1	1	0	1	
	1	1	1	1	1	

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	1
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	1

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	î
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
	0	1	0	0	0
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	0
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	(¬ <i>x</i> ₁)
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	0
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	0
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	î
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
6.	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	0
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
6.	1	0	0	0	1
	1	0	0	1	1
	1	0	1	0	1
	1	0	1	1	1
	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	1

Evolution of SOP-expression:

id	SOP
1.	false
2.	(¬ <i>x</i> ₁)
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$
6.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (x_4)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
6.	1	0	0	0	1
7.	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	1
	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	1

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$
6.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (x_4)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
6.	1	0	0	0	1
7.	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	(¬ <i>x</i> ₁)
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$
6.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (x_4)$
7.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (\neg x_1 \land x_4)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	r
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
6.	1	0	0	0	1
7.	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	0
8.	1	1	1	0	0
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$
6.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (x_4)$
7.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (\neg x_1 \land x_4)$

Correctly chosen

Erroneously chosen

Database:

id	\widehat{x}_4	\widehat{x}_3	\widehat{x}_2	\widehat{x}_1	î
3.	0	0	0	0	0
	0	0	0	1	0
2.	0	0	1	0	1
4.	0	0	1	1	0
5.	0	1	0	0	1
1.	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	0
6.	1	0	0	0	1
7.	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	0
8.	1	1	1	0	0
	1	1	1	1	0

Evolution of SOP-expression:

id	SOP
1.	false
2.	$(\neg x_1)$
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$
6.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (x_4)$
7.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (\neg x_1 \land x_4)$
8.	$\begin{array}{l} (\neg x_1 \land \neg x_2 \land x_4) \lor (\neg x_1 \land \neg x_2 \land x_3) \lor \\ (\neg x_1 \land x_2 \land \neg x_3) \end{array}$

Correctly chosen

Erroneously chosen

Database:

	\widehat{x}_1	\widehat{x}_2	\widehat{x}_3	\widehat{x}_4	id
נ	0	0	0	0	3.
)	1	0	0	0	
L	0	1	0	0	2.
נ	1	1	0	0	4.
L	0	0	1	0	5.
נ	1	0	1	0	1.
L	0	1	1	0	
)	1	1	1	0	
L	0	0	0	1	6.
נ	1	0	0	1	7.
L	0	1	0	1	
)	1	1	0	1	
L	0	0	1	1	
)	1	0	1	1	
)	0	1	1	1	8.
)	1	1	1	1	

Evolution of SOP-expression:

id	SOP
1.	false
2.	(¬ <i>x</i> ₁)
3.	(<i>x</i> ₂)
4.	$(\neg x_1 \land x_2)$
5.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3)$
6.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (x_4)$
7.	$(\neg x_1 \land x_2) \lor (\neg x_1 \land x_3) \lor (\neg x_1 \land x_4)$
8.	$\begin{array}{l} (\neg x_1 \land \neg x_2 \land x_4) \lor (\neg x_1 \land \neg x_2 \land x_3) \lor \\ (\neg x_1 \land x_2 \land \neg x_3) \end{array}$

CORRECT! (No new counterexamples)

Correctly chosen

x "some" erroneous implementation

x "some" erroneous implementation

Patch: ?

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	g_1	g_2	g_3	g_4	${g}_5$	\boldsymbol{g}_{6}	g_6
1.	0	0	0	0	0							

1. Counterexample computed with equivalence checking, e.g., ABC

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g}_1$	${m g}_2$	g_3	g_4	${g}_5$	${g_6}$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates

id	x_1	x_2	x_3	<i>x</i> ₄	x_5	${g}_1$	${g}_2$	g_3	g_4	${g}_5$	${g_6}$	${g_6}$
1.	0	0	0	0	0	0	0	0	0	1	0	

2. Re-simulate counterexample to obtain outputs of internal gates

Internal gates are allowed too!

id	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	x_5	${g}_1$	${g}_2$	g_3	g_4	${g}_5$	${g_6}$	${g_6}$
1.	0	0	0	0	0	0	0	0	0	1	0	
	L		X _I			L		X _R				

 $\exists F: \forall X_I: \exists X_R: Q(X_I, X_R, F(X_I, X_R))$

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates

Internal gates are allowed too!

$$\exists F: \forall X_I (\exists X_R) Q(X_I, X_R, F(X_I, X_R))$$

1. Counterexample computed with equivalence checking, e.g., ABC

2. Re-simulate counterexample to obtain outputs of internal gates

Internal gates are allowed too! (Another **∃**-quantor, but totally bounded)

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g}_1$	${m g}_2$	g_3	g_4	${g}_5$	${g_6}$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates

id	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	x_5	${g}_1$	${g}_2$	g_3	g_4	${g}_5$	g_6	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g}_1$	${m g}_2$	\boldsymbol{g}_3	g_4	${g}_5$	g_6	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it

Patch: true

id	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	x_5	${oldsymbol{g}}_1$	${m g}_2$	${g}_3$	${g}_4$	${g}_5$	${g}_6$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

Patch: *true*

id	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	x_5	${g}_1$	${m g}_2$	g_3	${g}_4$	${g}_5$	${g}_{6}$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0

1. Counterexample computed with equivalence checking, e.g., ABC

- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

Patch: tme

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g}_1$	${m g}_2$	g_3	${oldsymbol{g}}_4$	${g}_5$	g_6	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0

1. Counterexample computed with equivalence checking, e.g., ABC

- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

Patch: $(\neg x_1)$

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g}_1$	g_2	g_3	g_4	${g}_5$	g_6	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g}_1$	g_2	g_3	g_4	${g}_5$	g_6	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

Patch: $(\neg g_3)$

x "some" erroneous implementation

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	g_1	g_2	g_3	${g}_4$	${g}_5$	${g}_{6}$	${g_6}$
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1
4.	0	0	0	1	1	0	0	0	0	1	1	0

2. Re-simulate counterexample to obtain outputs of internal gates

 x_{5}

- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- Goto to step 1 to re-validate 5.

Patch: $(-\aleph_3)$

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g}_1$	g_2	g_3	g_4	${g}_5$	g_6	\boldsymbol{g}_6
1.	0	0	0	0	0	0	0	0	0	1	0	
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1
4.	0	0	0	1	1	0	0	0	0	1	1	0

1. Counterexample computed with equivalence checking, e.g., ABC

- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

Patch: $(\neg x_4 \land \neg g_3) \lor (g_2)$

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	${g_1}$	${m g}_2$	g_3	g_4	${g}_5$	${g_6}$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1
4.	0	0	0	1	1	0	0	0	0	1	1	0
5.	0	0	0	1	0	0	0	0	0	1	0	1

Patch: $(\neg x_4 \land \neg x_3) \lor (g_2)$

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

id	x_1	<i>x</i> ₂	x_3	x_4	x_5	g_1	${m g}_2$	g_3	g_4	${g}_5$	${g_6}$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1
4.	0	0	0	1	1	0	0	0	0	1	1	0
5.	0	0	0	1	0	0	0	0	0	1	0	1

Patch: $(\neg x_5 \land \neg g_3) \lor (g_2)$

- 1. Counterexample computed with equivalence checking, e.g., ABC
- 2. Re-simulate counterexample to obtain outputs of internal gates
- 3. Fix the correct value at g_6
- 4. Learn a circuit patch and insert it
- 5. Goto to step 1 to re-validate

id	x_1	x_2	x_3	x_4	x_5	${g}_1$	${g}_2$	g_3	g_4	${g}_5$	${g}_6$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1
4.	0	0	0	1	1	0	0	0	0	1	1	0
5.	0	0	0	1	0	0	0	0	0	1	0	1

Patch: $(\neg x_5 \land \neg g_3) \lor (g_2)$ **CORRECT!** (No new counterexamples)

id	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	x_5	${oldsymbol{g}}_1$	${m g}_2$	g_3	g_4	${g}_5$	${g_6}$	g_6
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1
4.	0	0	0	1	1	0	0	0	0	1	1	0
5.	0	0	0	1	0	0	0	0	0	1	0	1

Patch: $(\neg x_5 \land \neg g_3) \lor (g_2)$ **CORRECT!** (No new counterexamples)

- 5 samples (16%) suffice for re-synthesis
- Only single-output functions considered (correct output g_6 obtained by negation)
- Multi-output functions more possibilities have to be considered (computational more intensive!)
- No optimization of final patch

id	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	x_5	${oldsymbol{g}}_1$	${m g}_2$	g_3	g_4	${g}_5$	${m g}_6$	${g_6}$
1.	0	0	0	0	0	0	0	0	0	1	0	1
2.	1	1	0	0	1	0	0	1	0	0	1	0
3.	1	1	1	1	1	1	1	0	1	0	0	1
4.	0	0	0	1	1	0	0	0	0	1	1	0
5.	0	0	0	1	0	0	0	0	0	1	0	1

Patch: $(\neg x_5 \land \neg g_3) \lor (g_2)$ **CORRECT!** (No new counterexamples)

- 5 samples (16%) suffice for re-synthesis
- Only single-output functions considered (correct output g_6 obtained by negation)
- Multi-output functions more possibilities have to be considered (computational more intensive!)
- No optimization of final patch

Experimental setting

- Implemented the approach in C++ and evaluated it for circuit rectification
 - Satisfiability problems are solved using MiniSAT
 - Counterexamples are computed using the combinational equivalence checker of ABC and are re-simulated to obtain assignment for all internal gates
- Experiments conducted on a quad-core Intel i5-2520M CPU with 2.50GHz and 8GB RAM running Linux kernel 4.5.4-1

Rectifying multiple faults at a single location may be difficult

- No standard benchmark set for rectification available
- Seeded multiple faults into gate level circuits: ISCAS + EPFL benchmarks
- **Side-constraint:** the seeded faults can be rectified at a single location and the location is known (we used our **exact fault localization [ICCAD16]**)
 - ISCAS/EPFL benchmarks without this side-constraint were not considered
- 10 faulty versions of each circuit

Experimental evaluation: Restricted to SOP up to 2 cubes

Name	R	U	Τ/Ο	Ν	Ι	t_R	t_U	t_Σ	R rectified U unrectifiable with 2-SOP (proven)
c432	6	4	0	175.9	50.50	0.14	0.15	0.1	T/O timeout
cavlc	0	10	0	702.0	103.6	0.03	0.00	0.1	N mean number of variables
int2float	0	9	1	270.0	60.0	0.00	65.93	83.0	$t_{\rm r}$ time for rectified circuit (mean)
priority	0	10	0	1105.0	120.8	0.00	5.53	5.5	t_U time for unrectifiable circuits (mean)
router	1	9	0	293.9	45.7	0.50	0.58	0.6	t_{Σ} time for rectified or unrectifiable circuits (mean)

Time limit: 100s per benchmark

Experimental evaluation: Restricted to SOP up to 3 cubes

Name	R	U	T/O	Ν	Ι	t_R	t_U	t_Σ	R rectified U unrectifiable with 3-SOP (proven)
c432	7	3	0	175.9	72.8	0.31	38.90	11.9	T/O timeout
cavlc	3	1	6	702.0	232.2	3.14	96.89	70.6	N mean number of variables
int2float	5	4	1	270.0	141.6	1.12	20.11	8.6	t_{-} time for rectified circuit (mean)
priority	1	1	8	1105.0	237.7	5.58	19.40	82.5	t_U time for unrectifiable circuits (mean)
router	2	7	1	293.9	84.9	0.62	3.33	12.5	t_{Σ} time for rectified or unrectifiable circuits (mean)

Time limit: 100s per benchmark

Summary & conclusion

- Extension of the EF-synthesis problem by allowing existential quantification over Boolean functions with an application to circuit rectification or ECO-synthesis
- A CEGAR-based approach for determining Boolean function realizations in normal form representation (of bounded size)
 - SAT-based bound synthesis = Comb. equiv. checking + Boolean learning
- Experimental results for circuit rectification of *some* ISCAS and EPFL benchmarks
 - Multiple seeded faults are corrected at a single location
 - Sum-Of-Products representation

CEGAR-based EF Synthesis of Boolean Functions with an Application to Circuit Rectification Heinz Riener, Rüdiger Ehlers, and <u>Goerschwin Fey</u> German Aerospace Center, Bremen, Germany DFKI GmbH, Germany University of Bremen, Germany

Knowledge for Tomorrow

