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Motivation
• Up to 70% of total design 

effort and cost is consumed 
by functional verification1

• 37% of cost is spent on 
debugging: localizing and 
correcting design errors

• SAT-based automated 
debugging techniques can 
reduce time spent on this 
task
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1: H.D. Foster, Trends in Functional Verification: A 2014 Industry Study
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Motivation
• On-line verification

• Simulation, model checking, formal
• Narrow subset of design functionality

• Off-line verification
• Regression verification
• Extensive test suites
• Majority of design functionality

• Problem
• On-line debugging: automated
• Off-line debugging: largely manual process

• Compounded by multiple simultaneous failures
• Current automation techniques have limitations

University of Toronto



Motivation
• Software Configuration Management (SCM) 

stores information about the evolution of a design
• Version Control Systems (VCSs) store individual

changes to a design
• Issue Tracking Systems (ITSs) store relationships 

between changes

• Contribution: an extensible debug framework 
that uses SCM information to shorten the 
verification/debug cycle
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Objective:
Can we expedite analysis of debugging results 

using SCM data?
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Version Control Systems (VCS)
• Version Control Systems (VCS) are an 

important facet of an SCM flow

• Organize and track changes to design files
• Eases sharing overhead
• Allows multiple designers to work on a single 

project in tandem
• Examples: Git, Subversion, Mercurial, etc.

• Successive changes: revisions (commits)
• Unique revision ID
• Branch ID
• Changes (diff) to files
• Commit message, time, user
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Version Control Systems (VCS)
• Branches are used to isolate 

development on a single 
feature or bugfix

• Once development on a branch 
is complete, it is merged onto 
the mainline (master branch)

• Mainline
• Unmerged branch
• Merged branch
• Head
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Issue Tracking Systems (ITS)
• Issue Tracking Systems (ITS) are another 

important facet of a modern SCM flow

• Allows branches to be associated with issues

• Issues can be tagged with additional human-
oriented information

• Is the branch a bugfix or a feature addition?
• Related issues
• Issue hierarchy (parent/child)
• Resolved (closed), in progress (open)
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Clustering-based Revision Debug
• Clustering-based Revision Debug in 

Regression Verification [Maksimovic ICCD ‘15]
• Ranks revisions based on their likelihood of 

having introduced an error into the design
• Decreases the expected number of results that 

need to be analyzed before locating the error
• Can be extended to handle branches as well

• Two primary steps:
1. Suspect clustering
2. Revision ranking
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Suspect Clustering
• Goal: estimate number of errors in design 

and how suspects relate to errors
• Affinity propagation clustering is used to 

automatically locate exemplars (cluster 
centers)
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Revision Ranking
• Goal: rank revisions based on likelihood of 

having introduced an error into the design
• Combine information from suspect clustering 

and revision classification into weight

• Intuition:
• Revisions that are past bugfixes have higher 

weight
• Revisions matching suspects closer to an 

exemplar have smaller weight

University of Toronto
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Perceptron-based Revision Debug
• Goal: predict probability 

that a revision has 
inserted an error

• Train a perceptron 
(binary classifier, 
supervised learning)

• Single-layered neural 
network can be 
implemented using 
Logistic Regression or 
Support Vector Machine

University of Toronto
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Flattening Design History
• Goal: transform complex branching revisions 

into a list suitable for input to a perceptron

• Model revisions and branches as a Directed 
Acyclic Graph (DAG)

• Graph search can be used to identify branches

• Two flattening methods:
1. Revision-to-revision
2. Revision-to-head

University of Toronto



Revision-to-revision
• Revision-to-revision flattening

• Diff for each revision
• Extract changed lines

University of Toronto

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= q;

end

R1: Initial 
commit R2: Bugfix R3: Implement 

feature

always @ (posedge clk)
begin

if(rst)
q <= 0;

else if(set)
q <= 1;

else
q <= 1;

end

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= d;

end



Revision-to-head
• Revision-to-head flattening

• Intuition: how a revision’s 
changes affects the head

1. Prune redundant revisions
2. Flatten
3. For each revision, generate 

revision-to-head diff

University of Toronto



Head Selection
• Heads are failing revisions

• The current failing revision is a head
• Historically failing revisions can be used as 

heads for training

• Information on previous failures and their 
fixes is available in the VCS and ITS

• As bugfixes are committed, new heads are 
opened to be selected

University of Toronto
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Features
• For each revision used as a training sample:

• Unique revision ID
• Branch ID
• Bugfix/feature flag
• Set of matching values

University of Toronto



Features – Matching Values
• Intuition: match suspects with revisions
• For each head, run SAT-based debugging tool
• Matching values represent how much a given 

changed line matches with suspects

University of Toronto

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= q;

end

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= d;

end



• Perceptron using Logistic Regression is 
trained using labeled samples

• Samples are labeled as either having inserted 
an error or not

• Resolved issues in the ITS will facilitate this

Training

University of Toronto
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Extensions – SVM
• Logistic Regression performs well when 

features are linearly separable

• A Support Vector Machine (SVM) can be used 
instead of Logistic Regression

• Allows classification of features that are non-
linearly separable

• Requires additional tuning of hyperparameters
when compared to Logistic Regression, but 
can be trained with the same feature set
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Extension – Weighted Distance
• Rather than exact matching, use 

exponentially decaying matching function 
between changed line and suspects

University of Toronto

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= q;

end

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= d;

end
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Experimental Results
• Run on an Intel Core i5-3570K 

workstation
• Clocked at 3.40 GHz, 16 GB memory limit

• Backend SAT solver: Minisat 2.2.0
• Testcases include OpenCores designs and in-

house industrial designs
• Perceptrons coded in Python
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Experimental Results

Test
Clustering LR, r2r LR, r2h SVM, r2h

Rank Rank Rank Rank
ethernet 6 26 12 4
HA1588 1 10 11 7
I2C Core 1 19 16 3
tate pair 4 12 8 8
SD card 4 11 15 9
SDRAM CTRL 2 16 10 25
6507 CPU 41 14 9 5
VGA 12 23 19 16
packet fwd 8 23 18 13

University of Toronto

SVM almost universally 
performs better than LR… 

SVM performance approaches 
clustering, especially with 
many training samples

… but performs poorly with 
very few training samples.

r2h flattening usually gives 
better performance.
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Conclusion
• Perceptron-based revision debug

• Orthogonal approach to clustering-based 
revision debug

• Train perceptron on past failures and fixes
• Perceptron predicts probability new revisions 

have inserted an error
• Performance extensions: SVM, matching

• Future work
• Train a more complex perceptron: multi-

layered neural network
• Extend features to include additional 

information available in SCM systems
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