
An Extensible Perceptron 
Framework for Revision RTL 

Debug Automation
John Adler

Ryan Berryhill

Andreas Veneris

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Motivation
• Up to 70% of total design 

effort and cost is consumed 
by functional verification1

• 37% of cost is spent on 
debugging: localizing and 
correcting design errors

• SAT-based automated 
debugging techniques can 
reduce time spent on this 
task

University of Toronto

1: H.D. Foster, Trends in Functional Verification: A 2014 Industry Study

Typical Design Cycle

Verification
46%

Design
30%

Debugging
24%



Motivation
• On-line verification

• Simulation, model checking, formal
• Narrow subset of design functionality

• Off-line verification
• Regression verification
• Extensive test suites
• Majority of design functionality

• Problem
• On-line debugging: automated
• Off-line debugging: largely manual process

• Compounded by multiple simultaneous failures
• Current automation techniques have limitations

University of Toronto



Motivation
• Software Configuration Management (SCM) 

stores information about the evolution of a design
• Version Control Systems (VCSs) store individual

changes to a design
• Issue Tracking Systems (ITSs) store relationships 

between changes

• Contribution: an extensible debug framework 
that uses SCM information to shorten the 
verification/debug cycle

University of Toronto

Objective:
Can we expedite analysis of debugging results 

using SCM data?



Outline
• Motivation
• Preliminaries

• Software Configuration Management (SCM)
• Clustering-based Revision Debug
• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Outline
• Motivation
• Preliminaries

• Software Configuration Management (SCM)
• Clustering-based Revision Debug
• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Version Control Systems (VCS)
• Version Control Systems (VCS) are an 

important facet of an SCM flow

• Organize and track changes to design files
• Eases sharing overhead
• Allows multiple designers to work on a single 

project in tandem
• Examples: Git, Subversion, Mercurial, etc.

• Successive changes: revisions (commits)
• Unique revision ID
• Branch ID
• Changes (diff) to files
• Commit message, time, user

University of Toronto



Version Control Systems (VCS)
• Branches are used to isolate 

development on a single 
feature or bugfix

• Once development on a branch 
is complete, it is merged onto 
the mainline (master branch)

• Mainline
• Unmerged branch
• Merged branch
• Head

University of Toronto



Issue Tracking Systems (ITS)
• Issue Tracking Systems (ITS) are another 

important facet of a modern SCM flow

• Allows branches to be associated with issues

• Issues can be tagged with additional human-
oriented information

• Is the branch a bugfix or a feature addition?
• Related issues
• Issue hierarchy (parent/child)
• Resolved (closed), in progress (open)

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug

• Suspect Clustering
• Revision Ranking

• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Clustering-based Revision Debug
• Clustering-based Revision Debug in 

Regression Verification [Maksimovic ICCD ‘15]
• Ranks revisions based on their likelihood of 

having introduced an error into the design
• Decreases the expected number of results that 

need to be analyzed before locating the error
• Can be extended to handle branches as well

• Two primary steps:
1. Suspect clustering
2. Revision ranking

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug

• Suspect Clustering
• Revision Ranking

• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Suspect Clustering
• Goal: estimate number of errors in design 

and how suspects relate to errors
• Affinity propagation clustering is used to 

automatically locate exemplars (cluster 
centers)

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug

• Suspect Clustering
• Revision Ranking

• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Revision Ranking
• Goal: rank revisions based on likelihood of 

having introduced an error into the design
• Combine information from suspect clustering 

and revision classification into weight

• Intuition:
• Revisions that are past bugfixes have higher 

weight
• Revisions matching suspects closer to an 

exemplar have smaller weight

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug

• Flattening Design History
• Features and Training
• Extensions

• Experimental Results
• Conclusion

University of Toronto



Perceptron-based Revision Debug
• Goal: predict probability 

that a revision has 
inserted an error

• Train a perceptron 
(binary classifier, 
supervised learning)

• Single-layered neural 
network can be 
implemented using 
Logistic Regression or 
Support Vector Machine

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug

• Flattening Design History
• Features and Training
• Extensions

• Experimental Results
• Conclusion

University of Toronto



Flattening Design History
• Goal: transform complex branching revisions 

into a list suitable for input to a perceptron

• Model revisions and branches as a Directed 
Acyclic Graph (DAG)

• Graph search can be used to identify branches

• Two flattening methods:
1. Revision-to-revision
2. Revision-to-head

University of Toronto



Revision-to-revision
• Revision-to-revision flattening

• Diff for each revision
• Extract changed lines

University of Toronto

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= q;

end

R1: Initial 
commit R2: Bugfix R3: Implement 

feature

always @ (posedge clk)
begin

if(rst)
q <= 0;

else if(set)
q <= 1;

else
q <= 1;

end

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= d;

end



Revision-to-head
• Revision-to-head flattening

• Intuition: how a revision’s 
changes affects the head

1. Prune redundant revisions
2. Flatten
3. For each revision, generate 

revision-to-head diff

University of Toronto



Head Selection
• Heads are failing revisions

• The current failing revision is a head
• Historically failing revisions can be used as 

heads for training

• Information on previous failures and their 
fixes is available in the VCS and ITS

• As bugfixes are committed, new heads are 
opened to be selected

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug

• Flattening Design History
• Features and Training
• Extensions

• Experimental Results
• Conclusion

University of Toronto



Features
• For each revision used as a training sample:

• Unique revision ID
• Branch ID
• Bugfix/feature flag
• Set of matching values

University of Toronto



Features – Matching Values
• Intuition: match suspects with revisions
• For each head, run SAT-based debugging tool
• Matching values represent how much a given 

changed line matches with suspects

University of Toronto

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= q;

end

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= d;

end



• Perceptron using Logistic Regression is 
trained using labeled samples

• Samples are labeled as either having inserted 
an error or not

• Resolved issues in the ITS will facilitate this

Training

University of Toronto



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug

• Flattening Design History
• Features and Training
• Extensions

• Experimental Results
• Conclusion

University of Toronto



Extensions – SVM
• Logistic Regression performs well when 

features are linearly separable

• A Support Vector Machine (SVM) can be used 
instead of Logistic Regression

• Allows classification of features that are non-
linearly separable

• Requires additional tuning of hyperparameters
when compared to Logistic Regression, but 
can be trained with the same feature set

University of Toronto



Extension – Weighted Distance
• Rather than exact matching, use 

exponentially decaying matching function 
between changed line and suspects

University of Toronto

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= q;

end

always @ (posedge clk)
begin

if(rst)
q <= 0;

else
q <= d;

end



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Experimental Results
• Run on an Intel Core i5-3570K 

workstation
• Clocked at 3.40 GHz, 16 GB memory limit

• Backend SAT solver: Minisat 2.2.0
• Testcases include OpenCores designs and in-

house industrial designs
• Perceptrons coded in Python

University of Toronto



Experimental Results

Test
Clustering LR, r2r LR, r2h SVM, r2h

Rank Rank Rank Rank
ethernet 6 26 12 4
HA1588 1 10 11 7
I2C Core 1 19 16 3
tate pair 4 12 8 8
SD card 4 11 15 9
SDRAM CTRL 2 16 10 25
6507 CPU 41 14 9 5
VGA 12 23 19 16
packet fwd 8 23 18 13

University of Toronto

SVM almost universally 
performs better than LR… 

SVM performance approaches 
clustering, especially with 
many training samples

… but performs poorly with 
very few training samples.

r2h flattening usually gives 
better performance.



Experimental Results

University of Toronto

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700 800 900 1000

Sc
or

e

Training samples

Training Cross-validation

Poor performance with 
few training samples 

Performance grows with 
more training samples, 
not plateaued



Experimental Results

University of Toronto

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2

Ra
nk

Matching constant

clustering SVM

Low values match 
“too much”

High values reduce to 
non-weighted matching

Values between 1.1 and 1.3 
give optimal performance



Outline
• Motivation
• Preliminaries
• Clustering-based Revision Debug
• Perceptron-based Revision Debug
• Experimental Results
• Conclusion

University of Toronto



Conclusion
• Perceptron-based revision debug

• Orthogonal approach to clustering-based 
revision debug

• Train perceptron on past failures and fixes
• Perceptron predicts probability new revisions 

have inserted an error
• Performance extensions: SVM, matching

• Future work
• Train a more complex perceptron: multi-

layered neural network
• Extend features to include additional 

information available in SCM systems

University of Toronto


	An Extensible Perceptron Framework for Revision RTL Debug Automation
	Outline
	Outline
	Motivation
	Motivation
	Motivation
	Outline
	Outline
	Version Control Systems (VCS)
	Version Control Systems (VCS)
	Issue Tracking Systems (ITS)
	Outline
	Clustering-based Revision Debug
	Outline
	Suspect Clustering
	Outline
	Revision Ranking
	Outline
	Perceptron-based Revision Debug
	Outline
	Flattening Design History
	Revision-to-revision
	Revision-to-head
	Head Selection
	Outline
	Features
	Features – Matching Values
	Training
	Outline
	Extensions – SVM
	Extension – Weighted Distance
	Outline
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Outline
	Conclusion

