
Algorithm for Synthesis and 
Exploration of Clock spines

Youngchan Kim, Taewhan Kim
Department of Electrical and Computer Engineering

Seoul National University, Korea

yckim@snucad.snu.ac.kr, tkim@ssl.snu.ac.kr



Clock Distribution Network

Clock Mesh
High resource consumption
Tolerance to timing variation

Cross Links
Compromises clock resource
with timing variation

Clock spine
Another alternative
to the clock tree with links

Clock Tree
Low resource consumption
Suffers timing variation



Clock Spine Network Structure

Clock spine
Horizontal or vertical wire

Sinks with stubs
Every sink is attached
to its nearby spine

Spine buffers
Drive clock spines and sinks

Top-level tree
Deliver the clock signal from
Source to sink

Multiple clock paths
Tolerance to timing variation



Overall Synthesis Flow

Synthesize top-level tree
Drives spine buffers

Synthesize the clock spine
Spine allocation and placement
Stub allocation
Buffer allocation

Refine the spine network
Spine merging
Spine extension



Algorithm for Synthesizing Clock Spine 
Networks

Clock spine allocation and 
placement problem

CSAP problem Transform into
SFO problem

Solve
SFO problem Refinement

Slicing floorplan
optimization problem,

Single clock spine allocation 
and placement problem

Application of SFO algorithm,
Simulated annealing based 
algorithm

Spine merging,
Spine extension



Clock Spine Allocation and Placement 
Problem

Given
Placed clock sinks
Buffer library Ɓ
Constraints
- Lbound: minimum length of clock spine
- lbound: maximum length of stub wire
- The number of clock spines N

…

Objective
Generate a clock spine network S
Minimizes the quantity
𝐶𝐶 𝑆𝑆 = 𝛼𝛼1𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑆𝑆 + 𝛼𝛼2𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑆𝑆 + 𝛽𝛽𝐵𝐵𝐵𝐵(𝑆𝑆)

Lbound

lbound

> lbound< Lbound



Slicing Floorplan Optimization Problem

Given
Plane of 𝑚𝑚 × 𝑛𝑛 grids
Cost function 𝑓𝑓(𝑏𝑏) for a rectangle block
Parameters
- The number of sliced blocks N

Objective
Generate a slicing floorplan ℱ
by recursively slicing the plane 𝑁𝑁 − 1 times
Minimizes the quantity

𝐶𝐶′ ℱ = 𝑓𝑓 𝑏𝑏1 + 𝑓𝑓 𝑏𝑏2 + ⋯+ 𝑓𝑓(𝑏𝑏𝑁𝑁)

𝑓𝑓(𝑏𝑏1) 𝑓𝑓(𝑏𝑏2)

𝑓𝑓(𝑏𝑏3)

𝐶𝐶′ ℱ = 𝑓𝑓 𝑏𝑏1 + 𝑓𝑓 𝑏𝑏2 + 𝑓𝑓(𝑏𝑏3)



Transformation of CSAP Problem into 
SFO Problem

Transforming an instance of CSAP problem into an equivalent 
instance of SFO problem
Assign only one clock spine to one block b
Set cost function 𝑓𝑓 𝑏𝑏𝑖𝑖 for a rectangle block 𝑏𝑏𝑖𝑖 as 𝑐𝑐 𝑠𝑠𝑖𝑖
- 𝑓𝑓 𝑏𝑏𝑖𝑖 = 𝑐𝑐 𝑠𝑠𝑖𝑖 = 𝛼𝛼1𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 + 𝛼𝛼2𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵(𝑠𝑠𝑖𝑖)

𝑓𝑓(𝑏𝑏1) 𝑐𝑐(𝑠𝑠1)𝑓𝑓(𝑏𝑏2) 𝑐𝑐(𝑠𝑠2)

𝑓𝑓(𝑏𝑏3) 𝑐𝑐(𝑠𝑠3)

Need “good single spine allocation and placement”



Single Clock Spine Allocation and 
Placement

Given
A set of clock sinks in a block b
Buffer library Ɓ
Parameters
- Lbound

- lbound

…

Objective
Allocate a clock spine s to one block
Minimizes the quantity
𝑓𝑓 𝑏𝑏𝑖𝑖 = 𝑐𝑐 𝑠𝑠𝑖𝑖
= 𝛼𝛼1𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 + 𝛼𝛼2𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵(𝑠𝑠𝑖𝑖)

Lbound

lbound

> lbound< Lbound



How to Allocate One Spine to One 
Block
Spine directions
Horizontal / Vertical
- Direction with lower cost is selected
- Lbound

Buffer allocation
With buffer library Ɓ
Exhaustive trial
- Set maximum driving 

capacitance for each buffer in Ɓ
- Meet slew constraint
- Minimize BA(.) cost

…

Stub allocation
Determined by position of spine
Sweep the spine back and forth
- Minimize WLst(.) cost
- lbound

> lbound



Application of SFO Algorithm

Any SFO algorithm can be applied
Simulated annealing (SA) method based on the postfix expression
- proposed by Wong and Liu [16]

Postfix expression of slicing floorplan

+2

*2

+1

+3

+2

*1 *2 *3

b1 b2

b3

b1 b2

b3
● ● *2● +2

[16] D. F. Wong and Cl. L. Liu, “A new algorithm for floorplan design,” DAC, 1986.



Application of SFO Algorithm

Move operations
To traverse solution space of SFO problem
- Change the index of operator
- Complement an operator
- Swap operators
- Swap an operator with a bullet

+1

+3

+2

*1 *2 *3

b1 b2

b3

+2

*2

b1 b2

b3

● ● *2● +2
+3

+1

+3

+2

*1 *2 *3

b1
b2

b3

● ● *2● +3

*2

+3

● ● +3 ● *2

+1

+3

+2

*1 *2 *3

b1

b2

b3

Cost function for simulated 
annealing
𝐶𝐶′ ℱ = 𝑓𝑓 𝑏𝑏1 + 𝑓𝑓 𝑏𝑏2 + ⋯+ 𝑓𝑓(𝑏𝑏𝑁𝑁)
- 𝑓𝑓 𝑏𝑏𝑖𝑖 = 𝑐𝑐 𝑠𝑠𝑖𝑖 = 𝛼𝛼1𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 + 𝛼𝛼2𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 +
𝛽𝛽𝐵𝐵𝐵𝐵(𝑠𝑠𝑖𝑖)



Refinement of Clock Spine Network

Isolated clock sinks
Variability vulnerable sinks
To convert all isolated 
clock sinks to unisolated
ones

Spine Merging
Merge two nearby spines
- Distance threshold dmax

- Resize nearby buffers to drive merged spine

< dmax



Refinement of Clock Spine Network

Spine extension
Extend the spines
- Distance threshold dmax

- Insert new buffer to drive extended portion
- Resize nearby buffers to drive extended spine

Isolated clock sinks
Variability vulnerable sinks
To convert all isolated 
clock sinks to unisolated
ones



Experimental Environments

Libraries and benchmarks
PTM 45nm library [18]
ISPD 2010 benchmarks [17]

Clock environment
Supply voltage: 1.0V
Period: 0.5ns
Maximum slew rate: 50ps

1.0V

0.5 ns
50 ps

Process variation
𝑥𝑥𝑖𝑖~𝑥𝑥𝑖𝑖0 + 𝑁𝑁(0,𝜎𝜎𝑖𝑖2)

- 𝑥𝑥𝑖𝑖0: nominal value of random 
variable 𝑥𝑥𝑖𝑖
- 𝜎𝜎𝑖𝑖: standard deviation of random 
variable 𝑥𝑥𝑖𝑖, set to 10% of nominal 
value

Wire width

Sink input capacitance

Channel length of buffer

Simulation
100 Monte Carlo runs for each CDN
Synopsys HSPICE simulation



Experimental Environments

Clock Tree
Synthesized by [3]
Zero skew tree
[3] T. Y. Kim and T. Kim, “Clock tree embedding for 3d ics,” ASPDAC, 2010.

Clock Mesh with top-level tree
Synthesized by [7]
Top-level tree is synthesized by [3]
[7] G. Venkataraman, Z. Feng, J. Hu, and P. Li, “Combinatorial algorithms for 
fast clock mesh optimization,” IEEE TVLSI, vol. 18, no. 1, 2010.

Clock Spine with top-level tree
Top-level tree is synthesized by [3]



Experimental Results

Global clock skew
Unit: ps
Mean value of 100 Monte Carlo runs
38% decreased skew than clock tree
8.7% higher than clock mesh

03.in 05.in04.in
0

30

60

10

20

40

50

70

06.in 07.in 08.in

tree spine mesh



Experimental Results

Total wire length
Unit: μm
5% decreased wire usage
than clock tree

tree spine mesh

04.in 05.in 06.in 07.in 08.in03.in

0

100000

50000

150000

200000



Experimental Results

Total buffer area
Unit: μm2

15% higher buffer area than clock tree
6% usage compared to the clock mesh

tree spine

0

800

400

1200

1600

03.in 04.in 05.in 06.in 07.in 08.in



Experimental Results

Total power consumption
Unit: mW
11% less than clock tree
36% less than clock mesh

tree spine mesh

03.in 05.in 06.in 07.in 08.in04.in

0

40

20

60

80

100

120

140



Experimental Results

Clock spine synthesis considering clock gating
Comparison of results of clock-gating aware clock spine synthesis in [14] and ours
Cost function is updated
- 𝑐𝑐 𝑠𝑠𝑖𝑖 = 𝛼𝛼1𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 + 𝛼𝛼2𝑊𝑊𝐿𝐿𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐵𝐵 𝑠𝑠𝑖𝑖 + 𝜸𝜸𝑷𝑷𝑷𝑷𝑷𝑷(𝒔𝒔𝒊𝒊)
22% less clock skew
40% less wire length
60% less buffer area
45% less power consumption

tree spine

0

20

10

30

40

50

03.in 04.in 05.in 06.in 07.in 08.in

[14] H. Seo, J. Kim, M. Kang, and T. Kim,
“Synthesis for power-aware clock spines,” ICCAD, 2011.



Conclusions

Addressed the problem of automating the synthesis of 
clock spine networks
Never been automated as yet

Clock spine is tolerant to the clock skew variation while 
using less resource and power
Comparable to the clock mesh



Q & A


	Algorithm for Synthesis and Exploration of Clock spines
	Clock Distribution Network
	Clock Spine Network Structure
	Overall Synthesis Flow
	Algorithm for Synthesizing Clock Spine Networks
	Clock Spine Allocation and Placement Problem
	Slicing Floorplan Optimization Problem
	Transformation of CSAP Problem into SFO Problem
	Single Clock Spine Allocation and Placement
	How to Allocate One Spine to One Block
	Application of SFO Algorithm
	Application of SFO Algorithm
	Refinement of Clock Spine Network
	Refinement of Clock Spine Network
	Experimental Environments
	Experimental Environments
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Conclusions
	スライド番号 23

