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An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Steady-state analysis of nonlinear autonomous oscillators

@ Oscillation frequency unknown: no input
@ Shooting Newton and harmonic balancing

o Dependence initial guess
e System of nonlinear equations

Polynomial system solving

o No dependence on intial guess

e System of multivariate polynomials
Poincaré-Lindstedt method

o Not well-known in EDA
o No state-space formuation
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Steady-state analysis of nonlinear autonomous oscillators

1

Oscillation frequency unknown: no input

Shooting Newton and harmonic balancing

o Dependence initial guess
e System of nonlinear equations

Polynomial system solving

o No dependence on intial guess
e System of multivariate polynomials

@ Poincaré-Lindstedt method

o Not well-known in EDA
o No state-space formuation

Contributions
@ state-space formulation Poincaré-Lindstedt method
@ homotopy analysis method

@ Padé approximation instead of Taylor series
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Nonlinear automonous state-space system
=Gz +pf(r)
with u € R,z € R", G, A, € R"™"" (k=1,...,d) and
f@)=A1z+Azr+A3zxQc+--- .
® denotes the Kronecker product, e.g. n =2

T
rQz= (23 z1z2 T2T1 T3)
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Duffing oscillator

j+y+py® =0

sz=(y ), A

Il
N
| o
—_

O =
N
N
w
—~
N
—
S~—

Il
|
=



An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Taylor series fail

Suppose x(t, ;1) is periodic in ¢, then
l’(tau) Za:o(t)+x1(t)u+g;2(t)u2+... (1)

Fix degree k of Taylor series, plug (1) into state-space system and
solve for zo(t), z1(t), ..., xk(t).
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Taylor series fail

Suppose x(t, i) is periodic in t, then

2(t, ) = x0(t) + z1(t) p + 22(8) p? + - - (1)

Fix degree k of Taylor series, plug (1) into state-space system and
solve for zo(t), x1(t),...,xk(t). This fails in practice, e.g. the
Duffing oscillator

— 35(cos(t) — cos(3t) )
—2tcos(t) — 35 (11sin(t) + 3sin(3t)

which contains secular terms ¢ sin(t), t cos(t) that grow unbounded
with £.
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Poincaré-Lindstedt method
Introduce new p-dependent time parameter 7

T =w(u)t.

The w(u) parameter stretches the time-scale according to the fixed
value of p. We can model w(pu) as

w(p) = wo + wip +wop® + -+

6/20
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Poincaré-Lindstedt method
Introduce new p-dependent time parameter 7

T =w(u)t.

The w(u) parameter stretches the time-scale according to the fixed
value of p. We can model w(pu) as

w(p) = wo + wip +wop® + -+

With a new time parameter comes a new state vector
(7, 1) i= x(t, )

dz dz dr dz dz

6/20
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Additional assumptions

Z(Tnu) = ZO(T) + Zl(T),u,—l— 22(7-) ,u2 dh oo

Impose additional periodicity on z(7, ), e.g.
z(1, 1) = z(7 + 2w, ) for all u > O, which implies that

zi(Top) = zp(T 4+ 2m,pn), k=0,1,2,...,

which removes the secular terms.
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Solution strategy

@ Substitute Taylor series for w(p) and z(7, ) into
wg—j =Gz+pf(z),
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@ Substitute Taylor series for w(p) and z(7, ) into
wg—j =Gz+pf(z),
@ Equating coefficients of equal degrees of i leads to the

subsystems,
dZo
— =G
wo - 20,
d d
wo AL +w 2l G z1 + f1(20),
dr dr
dZQ d21 dZO

woﬁ—i_wlﬁ +w2ﬁ = G 22+ fa(20, 21),

with f1(20), f2(20, 21), - . . polynomial functions in z, 21, .
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Solution strategy continued

© Solve LTI system wyq % = G z for zo(7),

@ Determine wy from zo(7, u) = 2o(7 + 27, p),

@ Solve LTI system wyq % + wiq % =G z1 + fi1(zo) for z1(7),
@ Determine w; from z1 (7, u) = 21 (7 + 27, p),

@ etc....
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Solution strategy continued

© Solve LTI system wyq CZZTO = G z for zo(7),

@ Determine wy from zo(7, u) = 2o(7 + 27, p),

© Solve LTI system wp dzl + wq dzo = G z1 + fi(20) for z1(7),
@ Determine w; from Zl(T, p) = z1(1 + 2w, p),

@ etc....

New problem

Only works for values of y close to 0.
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Taylor series approximation for period of fing oscillator

7 T T T " :
— Exact period
Taylor d=1

6 — — - Taylor d=2

‘ —— Taylor d=3
5 L
4}t

-
3 L
2f T 1
1, =~ ~. _ 4
0 . . . . .
0 1 2 3 4 5 6
n

10/20



An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

State-space Homotopy Method

Establish the following homotopy mapping ¥(7,p) € R™ from the
initial solution ¥(7,0) := 2(7,0) to ¥(7,1) := z(7, u):

(1-p) [dd;rﬂ - G\If] — hp [u(mdd;:v G- pf(w)|,

U(7,p) = V(7 + 2m,p) for any p € [0, 1],

v(0,p) = a(p),
h is a nonzero auxiliary parameter,

u(1) = w(p) and a(l) = z(0, w).

11/20
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o0

U(r,p) =Y _ Ui(r)ph,
k=0
o

u(p) = u(r) p,
k=0

a(p) =Y _ ax(r)p*,
k=0

with Wi (7) = Ui (7 4 27) and Ui (0) = ay.
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New solution strategy

@ Substitute Taylor series for ¥(7, p), u(p), a(p) into
(1-p) [%\Il — G\If] = hp [u(p)%‘ll —GU — ,uf(\I’)]

13 /20
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@ Substitute Taylor series for ¥(7, p), u(p), a(p) into
(1-p) [%\Il — G\If] = hp [u(p)%‘ll —GU — ,uf(\I’)]
@ Equating coefficients of equal degrees of p leads to the

subsystems,
AV
- — =GU
dr o
v dw v
(= —GW) — (= = G W) = h [ug—= = G To— ufi(To) | ,
dr dr 2
A dv
(= —G¥y) — (5= - G¥) =
dr dr
av dv
h(uOil + ulio — GV — pfo (P, Uy1)),
dr dr

13 /20
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Solution strategy continued

© Solve LTI system M = G Yy,
@ Determine ug, ag from Wo(r,p1) = Vo(T + 27, 1),

@ Solve system
(42— G0y) — (40— G Wo) = h [ug ™ — G Wy — pufu (V)|
for Wy (1),

@ Determine uy, a; from Wy (7, u) = V(7 + 27, p),

@ etc....

14 /20
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Solution strategy continued

© Solve LTI system M = G Yy,
@ Determine ug, ag from Wo(r,p1) = Vo(T + 27, 1),

@ Solve system
(42— G0y) — (40— G Wo) = h [ug ™ — G Wy — pufu (V)|
for Wy (1),

@ Determine uy, a; from Wy (7, u) = V(7 + 27, p),

@ etc....

Order of computation

\I’O—>’U,O,CLQ—>\I/1—>U1,CL1—>-"

14 /20
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Computed results

d
wp) =Y uk,
k=0
d
z(0,p) = Zak.
k=0

15/20
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Computed results
d
Z(T, :UJ) = Z Uk,
k=0
d
w(p) = u,
k=0
d
z(0,p) = Z ag.
k=0

Better period estimation

Use Padé approximant for u(p), can be computed directly from the
Taylor series.

15/20
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Duffing oscillator

| Texact (u)—Tapprox(ﬂ)‘ < 5%

Maximal u such that [Toxact (14)]

Table : Trust region of p with a relative period error of 5%

PL PL+Pade | Homo+PL | Homo+PL+Pade
w | (0,1.60] | (0,4.77] | (0, 48.14] (0, >500]
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7 T
— Exact period
PL
6 — — PL+Pade
— — - Homo+PL
5 + Homo+PL+Pade ||

[ 17/20



An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

T
Exact waveform 1
PL

—— PL+Pade
— — —Homo+PL
+  Homo+PL+Pade

Exact waveform 1
— — —Homo+PL
= oL B +  Homo+PL+Pade

T
- 5 Exact waveform |
4 /s \\ an | — — -~ Homo+PL
= / A\ ,I \ \ , . , +  Homo+PL+Pade
3
<
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Conclusions

@ Original nonlinear differential equation is divided into
subproblems.

@ Each subproblem does not increase the scale of the original
problem.

@ Frequency is not required to be known a priori.

@ Padé approximation enhances accuracy of the period
estimation.
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Thank you!
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