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An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Motivation

Steady-state analysis of nonlinear autonomous oscillators

Oscillation frequency unknown: no input

Shooting Newton and harmonic balancing

Dependence initial guess
System of nonlinear equations

Polynomial system solving

No dependence on intial guess
System of multivariate polynomials

Poincaré-Lindstedt method

Not well-known in EDA
No state-space formuation

Contributions

state-space formulation Poincaré-Lindstedt method

homotopy analysis method

Padé approximation instead of Taylor series
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Background

Nonlinear automonous state-space system

ẋ = Gx+ µ f(x),

with µ ∈ R, x ∈ Rn, G,Ak ∈ Rn×nk
(k = 1, . . . , d) and

f(x) = A1 x+A2 x⊗ x+A3 x⊗ x⊗ x+ · · · .

⊗ denotes the Kronecker product, e.g. n = 2

x⊗ x =
(
x2

1 x1x2 x2x1 x2
2

)T
.
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Duffing oscillator

ÿ + y + µy3 = 0

⇒ x =
(
y ẏ

)T
, A1 =

(
0 1
−1 0

)
, A3(2, 1) = −µ.
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Taylor series fail

Suppose x(t, µ) is periodic in t, then

x(t, µ) = x0(t) + x1(t)µ+ x2(t)µ2 + · · · (1)

Fix degree k of Taylor series, plug (1) into state-space system and
solve for x0(t), x1(t), . . . , xk(t).

This fails in practice, e.g. the
Duffing oscillator

x1(t) =

(
−3

8 t sin(t)− 1
32(cos(t)− cos(3t)

−3
8 t cos(t)− 1

32(11sin(t) + 3sin(3t)

)
,

which contains secular terms t sin(t), t cos(t) that grow unbounded
with t.
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Poincaré-Lindstedt method

Introduce new µ-dependent time parameter τ

τ = ω(µ) t.

The ω(µ) parameter stretches the time-scale according to the fixed
value of µ. We can model ω(µ) as

ω(µ) = ω0 + ω1µ+ ω2µ
2 + · · ·

With a new time parameter comes a new state vector
z(τ, µ) := x(t, µ)

dz

dt
=
dz

dτ

dτ

dt
= ω

dz

dτ
⇒ ω

dz

dτ
= Gz + µ f(z).
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Additional assumptions

z(τ, µ) = z0(τ) + z1(τ)µ+ z2(τ)µ2 + · · · .

Impose additional periodicity on z(τ, µ), e.g.
z(τ, µ) = z(τ + 2π, µ) for all µ > O, which implies that

zk(τ, µ) = zk(τ + 2π, µ), k = 0, 1, 2, . . . ,

which removes the secular terms.
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Solution strategy

1 Substitute Taylor series for ω(µ) and z(τ, µ) into
ω dz
dτ = Gz + µ f(z),

2 Equating coefficients of equal degrees of µ leads to the
subsystems,

ω0
dz0

dτ
= Gz0,

ω0
dz1

dτ
+ ω1

dz0

dτ
= Gz1 + f1(z0),

ω0
dz2

dτ
+ ω1

dz1

dτ
+ ω2

dz0

dτ
= Gz2 + f2(z0, z1),

...

with f1(z0), f2(z0, z1), . . . polynomial functions in z0, z1, . . ..
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Solution strategy continued

3 Solve LTI system ω0
dz0
dτ = Gz0 for z0(τ),

4 Determine ω0 from z0(τ, µ) = z0(τ + 2π, µ),

5 Solve LTI system ω0
dz1
dτ + ω1

dz0
dτ = Gz1 + f1(z0) for z1(τ),

6 Determine ω1 from z1(τ, µ) = z1(τ + 2π, µ),

7 etc....

New problem

Only works for values of µ close to 0.
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An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Taylor series approximation for period of Duffing oscillator
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State-space Homotopy Method

Establish the following homotopy mapping Ψ(τ, p) ∈ Rn from the
initial solution Ψ(τ, 0) := z(τ, 0) to Ψ(τ, 1) := z(τ, µ):

(1− p)
[
d

dτ
Ψ−GΨ

]
= hp

[
u(p)

d

dτ
Ψ−GΨ− µf(Ψ)

]
,

Ψ(τ, p) = Ψ(τ + 2π, p) for any p ∈ [0, 1],

Ψ(0, p) = a(p),

h is a nonzero auxiliary parameter,

u(1) = ω(µ) and a(1) = z(0, µ).
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Additional assumptions

Ψ(τ, p) =

∞∑
k=0

Ψk(τ) pk,

u(p) =

∞∑
k=0

uk(τ) pk,

a(p) =

∞∑
k=0

ak(τ) pk,

with Ψk(τ) = Ψk(τ + 2π) and Ψk(0) = ak.
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New solution strategy

1 Substitute Taylor series for Ψ(τ, p), u(p), a(p) into
(1− p)

[
d
dτΨ−GΨ

]
= hp

[
u(p) d

dτΨ−GΨ− µf(Ψ)
]
,

2 Equating coefficients of equal degrees of p leads to the
subsystems,

dΨ0

dτ
= GΨ0,

(
dΨ1

dτ
−GΨ1)− (

dΨ0

dτ
−GΨ0) = h

[
u0
dΨ0

dτ
−GΨ0 − µf1(Ψ0)

]
,

(
dΨ2

dτ
−GΨ2)− (

dΨ1

dτ
−GΨ1) =

h(u0
dΨ1

dτ
+ u1

dΨ0

dτ
−GΨ1 − µf2(Ψ0,Ψ1)),

...
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Solution strategy continued

3 Solve LTI system dΨ0
dτ = GΨ0,

4 Determine u0, a0 from Ψ0(τ, µ) = Ψ0(τ + 2π, µ),

5 Solve system

(dΨ1
dτ −GΨ1)− (dΨ0

dτ −GΨ0) = h
[
u0

dΨ0
dτ −GΨ0 − µf1(Ψ0)

]
for Ψ1(τ),

6 Determine u1, a1 from Ψ1(τ, µ) = Ψ1(τ + 2π, µ),

7 etc....

Order of computation

Ψ0 → u0, a0 → Ψ1 → u1, a1 → · · ·

14 / 20
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Computed results

z(τ, µ) =
d∑

k=0

Ψk,

ω(µ) =
d∑

k=0

uk,

z(0, µ) =

d∑
k=0

ak.

Better period estimation

Use Padé approximant for u(p), can be computed directly from the
Taylor series.
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Duffing oscillator

Maximal µ such that
|Texact(µ)−Tapprox(µ)|

|Texact(µ)| ≤ 5%,

Table : Trust region of µ with a relative period error of 5%

PL PL+Pade Homo+PL Homo+PL+Pade

µ (0, 1.60] (0, 4.77] (0, 48.14] (0, >500]
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Duffing oscillator
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An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Duffing oscillator
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Conclusions

Original nonlinear differential equation is divided into
subproblems.

Each subproblem does not increase the scale of the original
problem.

Frequency is not required to be known a priori.

Padé approximation enhances accuracy of the period
estimation.
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Thank you!
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