An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Zhongming Chen, Kim Batselier, Haotian Liu, Ngai Wong

The University of Hong Kong Department of Electrical and Electronic Engineering

> January 17 ASP-DAC 2017

香 港 大 學 THE UNIVERSITY OF HONG KONG

Motivation

Steady-state analysis of nonlinear autonomous oscillators

- Oscillation frequency unknown: no input
- Shooting Newton and harmonic balancing
 - Dependence initial guess
 - System of nonlinear equations
- Polynomial system solving
 - No dependence on intial guess
 - System of multivariate polynomials
- Poincaré-Lindstedt method
 - Not well-known in EDA
 - No state-space formuation

Motivation

Steady-state analysis of nonlinear autonomous oscillators

- Oscillation frequency unknown: no input
- Shooting Newton and harmonic balancing
 - Dependence initial guess
 - System of nonlinear equations
- Polynomial system solving
 - No dependence on intial guess
 - System of multivariate polynomials
- Poincaré-Lindstedt method
 - Not well-known in EDA
 - No state-space formuation

Contributions

- state-space formulation Poincaré-Lindstedt method
- homotopy analysis method
- Padé approximation instead of Taylor series

Background

Nonlinear automonous state-space system

$$\dot{x} = G x + \mu f(x),$$

with $\mu \in \mathbb{R}, x \in \mathbb{R}^n, G, A_k \in \mathbb{R}^{n \times n^k}$ $(k = 1, \dots, d)$ and

$$f(x) = A_1 x + A_2 x \otimes x + A_3 x \otimes x \otimes x + \cdots$$

 \otimes denotes the Kronecker product, e.g. n=2

$$x\otimes x=egin{pmatrix} x_1^2 & x_1x_2 & x_2x_1 & x_2^2 \end{pmatrix}^T.$$

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Duffing oscillator

$$\ddot{y} + y + \mu y^3 = 0$$

$$\Rightarrow x = \begin{pmatrix} y & \dot{y} \end{pmatrix}^T, A_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, A_3(2, 1) = -\mu.$$

Taylor series fail

Suppose $x(t,\mu)$ is periodic in t, then

$$x(t,\mu) = x_0(t) + x_1(t)\,\mu + x_2(t)\,\mu^2 + \cdots$$
(1)

Fix degree k of Taylor series, plug (1) into state-space system and solve for $x_0(t), x_1(t), \ldots, x_k(t)$.

Taylor series fail

Suppose $x(t,\mu)$ is periodic in t, then

$$x(t,\mu) = x_0(t) + x_1(t)\,\mu + x_2(t)\,\mu^2 + \cdots$$
(1)

Fix degree k of Taylor series, plug (1) into state-space system and solve for $x_0(t), x_1(t), \ldots, x_k(t)$. This fails in practice, e.g. the Duffing oscillator

$$x_1(t) = \begin{pmatrix} -\frac{3}{8}t\sin(t) - \frac{1}{32}(\cos(t) - \cos(3t)) \\ -\frac{3}{8}t\cos(t) - \frac{1}{32}(11\sin(t) + 3\sin(3t)) \end{pmatrix},$$

which contains secular terms $t\sin(t),t\cos(t)$ that grow unbounded with t.

Poincaré-Lindstedt method

Introduce new μ -dependent time parameter τ

$$\tau = \omega(\mu) t.$$

The $\omega(\mu)$ parameter stretches the time-scale according to the fixed value of $\mu.$ We can model $\omega(\mu)$ as

$$\omega(\mu) = \omega_0 + \omega_1 \mu + \omega_2 \mu^2 + \cdots$$

Poincaré-Lindstedt method

Introduce new μ -dependent time parameter τ

$$\tau = \omega(\mu) t.$$

The $\omega(\mu)$ parameter stretches the time-scale according to the fixed value of μ . We can model $\omega(\mu)$ as

$$\omega(\mu) = \omega_0 + \omega_1 \mu + \omega_2 \mu^2 + \cdots$$

With a new time parameter comes a new state vector $z(\tau,\mu):=x(t,\mu)$

$$\frac{dz}{dt} = \frac{dz}{d\tau} \frac{d\tau}{dt} = \omega \frac{dz}{d\tau} \Rightarrow \omega \frac{dz}{d\tau} = G z + \mu f(z).$$

Additional assumptions

$$z(\tau,\mu) = z_0(\tau) + z_1(\tau) \,\mu + z_2(\tau) \,\mu^2 + \cdots$$

Impose additional periodicity on $z(\tau, \mu)$, e.g. $z(\tau, \mu) = z(\tau + 2\pi, \mu)$ for all $\mu > O$, which implies that

$$z_k(\tau,\mu) = z_k(\tau + 2\pi,\mu), \quad k = 0, 1, 2, \dots,$$

which removes the secular terms.

Solution strategy

Solution strategy

Equating coefficients of equal degrees of µ leads to the subsystems,

$$\omega_0 \frac{dz_0}{d\tau} = G z_0,$$

$$\omega_0 \frac{dz_1}{d\tau} + \omega_1 \frac{dz_0}{d\tau} = G z_1 + f_1(z_0),$$

$$\omega_0 \frac{dz_2}{d\tau} + \omega_1 \frac{dz_1}{d\tau} + \omega_2 \frac{dz_0}{d\tau} = G z_2 + f_2(z_0, z_1),$$

with $f_1(z_0), f_2(z_0, z_1), \ldots$ polynomial functions in z_0, z_1, \ldots

Solution strategy continued

- **③** Solve LTI system $\omega_0 \frac{dz_0}{d\tau} = G z_0$ for $z_0(\tau)$,
- Determine ω_0 from $z_0(\tau,\mu) = z_0(\tau+2\pi,\mu)$,
- Solve LTI system $\omega_0 \frac{dz_1}{d\tau} + \omega_1 \frac{dz_0}{d\tau} = G z_1 + f_1(z_0)$ for $z_1(\tau)$,
- **(** Determine ω_1 from $z_1(\tau,\mu) = z_1(\tau+2\pi,\mu)$,
- 🚺 etc....

Solution strategy continued

- **③** Solve LTI system $\omega_0 \frac{dz_0}{d\tau} = G z_0$ for $z_0(\tau)$,
- Determine ω_0 from $z_0(\tau,\mu) = z_0(\tau+2\pi,\mu)$,
- Solve LTI system $\omega_0 \frac{dz_1}{d\tau} + \omega_1 \frac{dz_0}{d\tau} = G z_1 + f_1(z_0)$ for $z_1(\tau)$,
- **(** Determine ω_1 from $z_1(\tau,\mu) = z_1(\tau+2\pi,\mu)$,

🚺 etc....

New problem

Only works for values of μ close to 0.

Taylor series approximation for period of Duffing oscillator

State-space Homotopy Method

Establish the following homotopy mapping $\Psi(\tau, p) \in \mathbb{R}^n$ from the initial solution $\Psi(\tau, 0) := z(\tau, 0)$ to $\Psi(\tau, 1) := z(\tau, \mu)$:

$$(1-p)\left[\frac{d}{d\tau}\Psi - G\Psi\right] = hp\left[u(p)\frac{d}{d\tau}\Psi - G\Psi - \mu f(\Psi)\right],$$

- $\Psi(\tau,p)=\Psi(\tau+2\pi,p)$ for any $p\in[0,1]$,
- $\Psi(0,p) = a(p)$,
- h is a nonzero auxiliary parameter,
- $\bullet \ u(1)=\omega(\mu) \text{ and } a(1)=z(0,\mu).$

Additional assumptions

$$\Psi(\tau, p) = \sum_{k=0}^{\infty} \Psi_k(\tau) p^k,$$
$$u(p) = \sum_{k=0}^{\infty} u_k(\tau) p^k,$$
$$a(p) = \sum_{k=0}^{\infty} a_k(\tau) p^k,$$

with $\Psi_k(\tau) = \Psi_k(\tau + 2\pi)$ and $\Psi_k(0) = a_k$.

New solution strategy

3 Substitute Taylor series for
$$\Psi(\tau, p), u(p), a(p)$$
 into
 $(1-p) \left[\frac{d}{d\tau}\Psi - G\Psi\right] = hp \left[u(p)\frac{d}{d\tau}\Psi - G\Psi - \mu f(\Psi)\right]$

New solution strategy

3 Substitute Taylor series for $\Psi(\tau, p), u(p), a(p)$ into $(1-p) \left[\frac{d}{d\tau}\Psi - G\Psi\right] = hp \left[u(p)\frac{d}{d\tau}\Psi - G\Psi - \mu f(\Psi)\right],$

Equating coefficients of equal degrees of p leads to the subsystems,

$$\begin{aligned} \frac{d\Psi_0}{d\tau} &= G \,\Psi_0, \\ (\frac{d\Psi_1}{d\tau} - G \,\Psi_1) - (\frac{d\Psi_0}{d\tau} - G \,\Psi_0) &= h \left[u_0 \frac{d\Psi_0}{d\tau} - G \,\Psi_0 - \mu f_1(\Psi_0) \right], \\ (\frac{d\Psi_2}{d\tau} - G \,\Psi_2) - (\frac{d\Psi_1}{d\tau} - G \,\Psi_1) &= \\ h(u_0 \frac{d\Psi_1}{d\tau} + u_1 \frac{d\Psi_0}{d\tau} - G \,\Psi_1 - \mu f_2(\Psi_0, \Psi_1)), \\ \vdots \end{aligned}$$

Solution strategy continued

3 Solve LTI system
$$\frac{d\Psi_0}{d\tau} = G \Psi_0$$

 \bullet Determine u_0, a_0 from $\Psi_0(\tau, \mu) = \Psi_0(\tau + 2\pi, \mu)$,

$$\begin{aligned} & \textbf{Solve system} \\ & \left(\frac{d\Psi_1}{d\tau} - G\,\Psi_1\right) - \left(\frac{d\Psi_0}{d\tau} - G\,\Psi_0\right) = h\left[u_0\frac{d\Psi_0}{d\tau} - G\,\Psi_0 - \mu f_1(\Psi_0)\right] \\ & \textbf{for } \Psi_1(\tau), \end{aligned}$$

- $\textbf{O} \ \ \text{Determine} \ \ u_1,a_1 \ \text{from} \ \ \Psi_1(\tau,\mu)=\Psi_1(\tau+2\pi,\mu),$
- 🕜 etc....

Solution strategy continued

3 Solve LTI system
$$rac{d\Psi_0}{d au} = G \, \Psi_0$$

 \bullet Determine u_0, a_0 from $\Psi_0(\tau, \mu) = \Psi_0(\tau + 2\pi, \mu)$,

$$\begin{aligned} & \textbf{Solve system} \\ & \left(\frac{d\Psi_1}{d\tau} - G\,\Psi_1\right) - \left(\frac{d\Psi_0}{d\tau} - G\,\Psi_0\right) = h\left[u_0\frac{d\Psi_0}{d\tau} - G\,\Psi_0 - \mu f_1(\Psi_0)\right] \\ & \textbf{for } \Psi_1(\tau), \end{aligned}$$

() Determine
$$u_1, a_1$$
 from $\Psi_1(\tau, \mu) = \Psi_1(\tau + 2\pi, \mu)$,

🚺 etc....

Order of computation

$$\Psi_0 \to u_0, a_0 \to \Psi_1 \to u_1, a_1 \to \cdots$$

Computed results

$$z(\tau,\mu) = \sum_{k=0}^{d} \Psi_k,$$
$$\omega(\mu) = \sum_{k=0}^{d} u_k,$$
$$z(0,\mu) = \sum_{k=0}^{d} a_k.$$

Computed results

$$z(\tau,\mu) = \sum_{k=0}^{d} \Psi_k,$$
$$\omega(\mu) = \sum_{k=0}^{d} u_k,$$
$$z(0,\mu) = \sum_{k=0}^{d} a_k.$$

Better period estimation

Use Padé approximant for u(p), can be computed directly from the Taylor series.

Duffing oscillator

Maximal
$$\mu$$
 such that $\frac{|T_{\text{exact}}(\mu) - T_{\text{approx}}(\mu)|}{|T_{\text{exact}}(\mu)|} \leq 5\%$,

Table : Trust region of μ with a relative period error of 5%

	PL	PL+Pade	Homo+PL	Homo+PL+Pade
μ	(0, 1.60]	(0, 4.77]	(0, 48.14]	(0, >500]

Duffing oscillator

Duffing oscillator

Conclusions

- Original nonlinear differential equation is divided into subproblems.
- Each subproblem does not increase the scale of the original problem.
- Frequency is not required to be known a priori.
- Padé approximation enhances accuracy of the period estimation.

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

Thank you!