

Islands of Heaters: A Novel Thermal Management Framework for Photonic Network-on-Chip

Dharanidhar Dang, **Rabi Mahapatra** Texas A&M University, College Station, TX, USA {d.dharanidhar, rabi}tamu.edu Sai Vineel Reddy Chittamuru, **Sudeep Pasricha** Colorado State University, Fort Collins, CO, U.S.A. {sai.chittamuru, sudeep}@colostate.edu

Dang and Sai are primary authors

Outline

- Introduction
- Motivation
- Related Work
- IHDTM Framework Overview

Device-level Islands of Heaters Framework

System-level Thread Aware Thermal Management (TATM)

- Experimental Results
- Conclusion

Introduction

The Manycore era...

Intel Xenon 7500 processor

Intel Tilera 100-core chip Source: Joshi et al. HOTI, 2008

• 512-core chip by 2020

Introduction

• How good is Electrical NoC?

- 10-15 Tflops/chip at 5 GHz
- Data intensive apps may take 1 byte/flop
- Requirement: 10-15 Tbps of NoC throughput

Introduction

Electrical Interconnects vs Photonic Interconnects

Interconnects	Energy (pJ/bit)	Bandwidth Density (Gbps/μ)
On-chip Optimally Repeated Electrical Link	1.0	5.0
On-chip Photonic Link	0.25	160.0-320.0
Off-chip Electrical Link (100 μ pitch)	5.0	0.1
Off-chip Photonic Link (50 μ Coupler pitch)	0.25	13-26

Photonic interconnects based Network-on-Chips (PNoCs) provide higher bandwidth with lower power consumption

Introduction to Photonic Elements

Introduction to Photonic Elements

- Microring resonator operation
 - Modulator to write data
 - Detector to read data

Modulators and detectors are used to traverse data in photonic links of PNOCs

Motivation

On an average 15-20°C of temperature gradient

Motivation

Temperature variation impact on MRR

Motivation

These drawbacks of MRRs motivate us to propose a dynamic thermal management for PNoCs

Related Work

Device-level thermal management in PNoCs :

- **[Z. Li et al. IEEE TVLSI 2012]** Presents athermal photonic devices to reduce the localized tuning/trimming power in MRs
- [Joanna et al. Materials 2010] Use of liquid crystal cladding to reduce the effect of temperature variations

These works: 1)High power and area overhead 2)Require costly changes in the manufacturing process

System-level thermal management in PNoCs:

- **[C. Nitta et al. HPCA 2011]** overhead associated with localized tuning of MRRs is reduced in using the group drift property of co-located MRs
- **[T. Zhang et al. DATE 2014]** a ring aware thread scheduling policy (RATM) is proposed to reduce onchip thermal gradients in a PNoC

These works do not consider: 1) impact of run-time workload variations 2) relationship between thermal hotspots and transmission reliability

Going Deeper into Thermal Distribution

Simulating PARSEC and SPLASH suite on 3D-ICE shows: Three major temperature zones i.e. 363K, 343K, 323K

Cross-layer: IHDTM Framework

PID Controlled Heater

- Each MRR is integrated with a PID controlled heater
- Thermal sensor of corresponding core feeds temperature data
- Heater is set to work at the corresponding island temperature.

Heater Type	Power Req (mW/nm)	Heating τ (μs)	Cooling τ (μs)
Doped-Si	3.138	21.3	66.0
Silicide	3.462	19.1	75.8
Tungsten	3.6	38.2	45.11
Doped WG	3.369	43.4	39.8

PID Controlled Heater

PID Algorithm

 $T_{island} = Temperature of the Island$

1. Sensor-start 2. if $(T != T_{island})$ a. $dT = |T_{island} - T|$ b. $P_{Heat} = \frac{dT}{\rho} * H_{eff}$ 3. if $(T \ge T_{island})$ c. $i_{Heat} = i_{Current} - \sqrt{P_{Heat}/R_{Heat}}$ 4. if $(T < T_{island})$ c. $i_{Heat} = i_{Current} + \sqrt{P_{Heat}/R_{Heat}}$

5. *Delay* (1 * 10⁶) // Delay of 1 mili-second 6. Loop continue

12-Apr-17

System-level TATM: Working Principle

SVR based Temperature Prediction

- SVR model employs a kernel based regression
 - Kernel is Radial Basis Function (RBF)
- Training of SVR
 - > 9-core (3×3) platform is used to generate training sets
 - with different thread mappings of PARSEC and SPLASH-2 benchmark apps
 - Running 2, 4 and 8 threads
- Determination of accuracy of SVR
 - ➢ 6000 floor plans are generated
 - □ 70% are used for training
 - □ 30% are used for testing
 - Accuracy of our SVR model is over 95%

Experimental Setup

- We Analyzed our IHDTM Framework by porting it to PNoCs
 - [D. Vantrease et al. MICRO 2009] <u>Corona</u> PNoC architecture with token slot arbitration and 64X64 multiple write single read (MWSR) crossbar
 - [Y. Pan et al. HPCA 2010] <u>Flexishare</u> PNoC architecture with token stream arbitration and multiple write multiple read (MWMR) crossbar
- CMP configuration for implementation for Corona and Flexishare PNoCs

CMP Configuration			
Number of cores	64		
Technology node	32nm		
Memory controllers	8		
Main memory	8GB; DDR4@30ns		
Per Core:			
L1 I-Cache size/Associativity	32KB/Direct Mapped Cache		
L1 D-Cache size/Associativity	32KB/Direct Mapped Cache		
L2 Cache size/ Associativity	256KB/ Direct Mapped Cache		
L2 Coherence	MOESI		
Frequency	5 GHz		
Issue Policy	In-order		

Comparison with Prior Work

- We compare IHDTM when ported to Corona and Flexishare with
 - > [T. Zhang et al. DATE 2014] a ring aware policy (RATM)
 - Distributes threads uniformly across cores that are closer to PNoC MRR clusters
 - then distributes the remaining threads in a regular pattern from outer cores to inner cores
 - [I. Yeo et al. DAC 2008] predictive dynamic thermal management (PDTM) framework
 - □Uses a recursive least square based temperature predictor
 - □ When a core temperature is more than thermal threshold
 - Thread migration is performed to the coolest core that is not executing any threads

Max Temp for Corona with 48 Threads

Corona: D. Vantrease et al. MICRO 2009

• With integrated localized tuning by PID heater, IHDTM lowers maximum temperature compared to RATM by

IHDTM has 13.2K and 2.37 K lower maximum temperatures compared to the RATM and PDTM policies respectively, for 48 threads

Max Temp for Corona with 32 Threads

Corona: D. Vantrease et al. MICRO 2009

IHDTM has better maximum temperature control for 32 threads compared to 48 threads as more free cores are available for thread migration

Corona Power for 64-core CMP

Corona: D. Vantrease et al. MICRO 2009

• IHDTM with Corona has lower power dissipation than RATM and PDTM

IHDTM with Corona has 45.5% and 46.8% lower total power consumption compared to Corona with RATM and PDTM respectively

Flexishare Power for 64-core CMP

Flexishare: Y. Pan et al. HPCA 2010

• Flexishare with IHDTM has 63.5% and 64.1% lower power dissipation compared to Flexishare with RATM and PDTM respectively

Flexishare with IHDTM has more power savings compared to Corona with IHDTM

Corona Execution Time for 64-core CMP

 Corona with IHDTM has 12.8% and 7.4% higher execution time compared to Corona with RATM for 48 and 32-threads respectively

> IHDTM takes slightly extra time for migration whereas no migration in RATM

- Corona with IHDTM has 2.6% and 4.3% higher execution time compared to Corona with PDTM for 48 and 32-threads respectively
 - IHDTM performs more migration (inter and intra) when thermal emergency is predicted

Conclusion

- Proposed IHDTM framework
 - combines a novel device-level framework with a new dynamic thermal management mechanisms to
 - □ reduce maximum on-chip temperature
 - Conserve trimming and tuning power
- IHDTM improvements over state-of-the-art solutions
 > up to 64.1% (Total Power), 71% (Trimming/tuning power)
- IHDTM is more effective in reducing power for optimized PNoCs like Flexishare compared to Corona

Thank You

• Questions / Comments ?

Extra:Tolerate Thermal Variations

