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Challenges faced by 3D CMP
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NoC router
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Figure 1: Two-layer 3D CMP
Architecture

Benefits:

1 Multiple active layers stacked.

2 Energy efficiency and scalability.

3 Short interconnect delay.

Challenges:

1 High power density.

2 Thermal emergency.

3 Reliability threat, device aging.

How to address thermal challenges?
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Thermal-aware task mapping techniques for 3D CMP

Based on thermal-aware or power-aware scheduling approaches:

Targeting independent tasks

1 Stack power balance[1]

2 Incremental update of thermal simulation[2]

Targeting task graphs

1 Swap tasks between hot and cold stacks[3]

2 Move low power tasks to top layer [4]

3 Schedule tasks in the order of priority, thermal simulations for
mapping[5]
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Drawbacks of the previous works

Neglect influence of neighboring cores and leakage power on
temperature[1]

High computational complexity[2]

Incur huge swapping overhead[4, 3]

High thermal simulation overhead at run-time [5]

Thus we propose a novel decoupling scheduling algorithm for peak
temperature minimization while optimizing the makespan of the
application.
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Two-stage scheduling algorithm

Decouple the optimization of makespan and temperature into two stages
and optimize them separately.

Communication-aware group (CAG) stage: Design-time stage

1 Bind individual tasks to super tasks assuming different number of avail-
able cores.

2 Brute-force or genetic algorithm

3 Minimize the makespan considering the worst-case communication.

Thermal-aware scheduling (TAS) stage: Run-time stage

1 Super tasks mapped to real available cores.

2 Different strategies to handle different layers.

3 Thermal rank model & Combined power model.

4 For peak temperature minimization.
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Design-time makespan optimization
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Figure 2: An example DG model:
Autoindust2

Search the best mappings utiliz-
ing different number of cores.

Exhaustive exploration when task
number is small.

GA is applied when the task num-
ber is bigger.

Consider the maximum hop
(communication delay) between
cores.
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Design-time makespan optimization

Super task: a group of tasks (nodes) which are mapped to a particular
core in a given scheduling interval.

#Cores C1 C2 C3 C4 C5 C6 Period(cycles)

6 e d c b f a 19018400

5 * e d c bf a 19004900

4 * * de c bf a 18991400

3 * * * cde bf a 18977900

2 * * * * bcdef a 18960000

1 * * * * * bacdef 21360000

Figure 3: Best mappings generated at
design-time for Autoindust2
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Figure 4: Two super tasks with the
minimum makespan
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Run-time peak temperature optimization

Application

Select the best mapping

CAG Stage:Super task

A hot super task?

Schedule to bottom layer Schedule to top layer

No more super task?

End

No

Yes

Yes

No

Figure 5: Flow chart of TSS

Select the best mapping depending on
the number of available cores.

Classify super tasks based on their
power.

Different core selection strategy in
different layers.

A combination of two heuristics:
1 Thermal rank model in bottom layer

(the layer closest to heat sink).
2 Combined power model in top layer

(the layer far away from heat sink).
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Thermal rank model in bottom layer

Dissipating heat to ambient faster, consider thermal efficiency.

Thermal rank determines the likelihood of a core to receive new tasks
for execution.

Smaller thermal rank, higher thermal efficiency.

TR = (T + Lw · Tl + V w · Tv) · ρ · Pf

T : temperature of the candidate core;
Tl, Tv : temperature of the lateral and vertical
neighboring cores;
ρ: the proximity to the heat sink;
Pf : position factor, the influence of absolute
position of a core;
Lw, Vw: lateral and vertical thermal
conductance.
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Stack
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Figure 6: 3D CMP Architecture
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Combined power model in top layer

Pcombined = (R0 amb · P0 +R1 amb · P1) · Pf

Hotspot and temperature emer-
gency in this layer.

Limiting the total power in a core
stack.

Consider the stacked power in
the top layer.
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Figure 7: An example of target 3D CMP
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Extension to Multi-layer 3D CMP

Consider thermal efficiency and the stacked power for different layers;

Hot super task to hyper-bottom layer, cool super task to hyper-top layer.

For a three-layer 3D CMP and four-layer 3D CMP.
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Figure 8: A three-layer 3D CMP
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Figure 9: A four-layer 3D CMP
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Run-time Mapping Algorithm

 Super task set S,
Idle core set IDLE0, 
Idle core set IDLE1,
Temperature set T.

Thermal rank array TR,
Combined power array P

A hot super task?

TB=pop up an item in S.

Schedule to bottom layer Schedule to top layer

Find the minimum entry 
in P, and its id j.

Find the minimum entry 
in TR, and its id i.

Delete core i from IDLE0 Delete core j from IDLE1

No more 
super task?

END

Yes

No

Yes

No

Figure 10: Flow chart of the run-time algorithm
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Parameters and Overall Experimental Flow

Steps for comparison:
1 CF and TR: targeting independent tasks. Temperate comparison to validate the

run-time TAS algorithm.

2 PTLS: targeting task graphs. Both temperature and performance comparison to
validate our TSS algorithm.

3 Vary scheduling interval from 1ms to 2ms to explore the scenarios under different
workload pressure.

Methods Abbreviation References
Coolest First CF [4]
Thermal Profiling TR [1]
Peak Temperature List Scheduling PTLS [5]
Two-stage scheduling TSS proposed

Table 1: Methodologies considered for comparison
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Validate the TAS algorithm
1 TR in [1] and CF in [4] are considered for only temperature comparison, validating

the TAS stage.

2 For fair comparison, we assume that the design time makespan optimization results
are available to the approaches targeting independent tasks.

3 Seven benchmarks at fixed scheduling interval of 1ms are mapped to 4×4×2 CMP.

4 Reduce peak temperature up to 5.0◦C compared to CF, and up to 4.4◦C compared
to TR.
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Figure 11: Absolute peak temperature of individual benchmarks
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Varying the scheduling interval

1 Varying the scheduling interval to explore the scenarios under different workload
pressure.

2 Average reduction of 3.6◦C, maximum reduction of 6.1◦C.

-1.0

1.0

3.0

5.0

7.0

1.0 1.2 1.4 1.6 1.8 2.0

Scheduling interval (ms)

TSS TR CF

R
el

at
iv

e 
P

ea
k

Te
m

p
er

at
u

re
[°

C
] 

Figure 12: Relative peak temperature on two layer 3D CMP
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Comparing to PTLS on Two Layers

1 7 benchmarks on a two-layer 3D CMP arranged in the 4× 4× 2 pattern.

2 CAG stage optimizes the makespan, and TAS stage reduces peak temperature.

3 An average of 4.9% performance improvement, and 6.3◦C peak temperature reduc-
tion.
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Figure 13: Improvement compared to PTLS for two layers
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Comparing to PTLS on Four Layers

1 A four layer 3D CMP arranged in the 2× 4× 4 pattern, the same total number of
cores as two-layer 3D CMP.

2 An average of 6.78% performance improvement, and 10.0◦C peak temperature re-
duction.

3 Greater improvement is achieved with the increasing number of layers.
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Figure 14: Improvement compared to PTLS for four layers
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TAS VS. Thermal rank only and Combined power only

1 Compare our TAS approach which incorporates the consideration of both thermal
efficiency and power stack against the ones considering only one factor.

2 Check the peak temperature at fixed scheduling interval of 1ms on two-layer, three-
layer, and four-layer 3D CMPs.

3 Every layer is comprised of 4× 4 identical cores.

4 TAS outperforms them by 7.3◦C and 5.7◦C reduction, respectively.
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Figure 15: Relative peak temperature on 3D CMPs with different layers
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Summary and Future Works

Summary

A two-stage thermal-aware task scheduling algorithm.

Two steps: the communication-aware group stage at design-time, and
the thermal-aware scheduling step at run-time.

Average 4.9% performance improvement and 6.3◦C peak temperature
reduction.

Future Works

Apply DVFS into the thermal-aware scheduling algorithm to further reduce
the peak temperature.
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