Network Flow Based Cut Redistribution and Insertion for Advanced 1D Layout Design

Ye Zhang¹, Wai-Shing Luk¹, Fan Yang¹, Changhao Yan¹, Hai Zhou^{1,2}, Dian Zhou^{1,3}, Xuan Zeng¹
1. State Key Laboratory of ASIC & Systems, Microelectronics Department, Fudan University, China
2. Electrical Engineering and Computer Science Department, Northwestern University, U.S.A.
3. Electrical Engineering and Computer Science Department, Northwestern University, U.S.A.

- Introduction
- Techniques to Print Cuts with 193i
- Experimental Results
- Conclusion

Introduction

- Techniques to Print Cuts with 193i
- Experimental Results
- Conclusion

Sub-10nm Technology Node

Technology candidates

- Quadruple Patterning Lithography
 - Overlay Error
- Self-Aligned Multiple Patterning
 - Complex Block Mask Shapes
- E-Beam
 - Low Productivity
- EUV
 - Not Ready

Gualification / Pre-Production

Continuous (reprovement

source: ITRS

Sub-10nm Technology Node

Technology candidates

Advanced 1D Process

2D Process

1D Process

Introduction

Advanced 1D Process

Process Demo

Introduction

Techniques to Print Cuts with 193i

- Experimental Results
- Conclusion

Conflicts Removal Techniques

[1] Y. Du, et al., "Hybrid lithography optimization with e-beam and immersion processes for 16nm 1D gridded design," ASP-DAC 2012.
[2] Y. Ding, et al., "Throughput optimization for SADP and e-beam based manufacturing of 1D layout," DAC 2014.

Cut Redistribution

Cut Constraints

$$\begin{aligned} x_i - x_j &\leq 0 \land x_j - x_i \leq 0\\ for \left| y_i - y_j \right| &\leq 1 \end{aligned}$$

Cut Redistribution

Cut Constraints(cont.)

EXTENSION (C3)

BOUND (C4)

 $x_0 - x_i \le -l_i \wedge x_i - x_0 \le r_i - w_c$

Problem Formulation of Cut Redistribution

Scenarios o	Constraints	
On the same line	Share the same gap	<i>C</i> 1V <i>C</i> 2
	Share the same target wire	<i>C</i> 1\ <i>C</i> 3
	Neither above	<i>C</i> 1
On	<i>C</i> 1V <i>C</i> 2	

C4 must be met for all cuts.

If \lor is eliminated, the cut redistribution problem can be formulated as:

Dual form of a min-cost flow problem, can be optimally solved.

Total wire length
$$\approx$$
 #violated constraintsmin $\sum_{v_i \in V} b_i x_i$ $+$ $\sum_{(v_i, v_j) \in E} m_{ij} \alpha_{ij}$ s. t. $x_i - x_j \leq c_{ij} + \alpha_{ij}, \forall (v_i, v_j) \in E$ $\alpha_{ij} \geq 0, \forall (v_i, v_j) \in E.$

LRM Determination

- LRM:
 - A Left-of B, A Right-of B, A Merge-into B
 - If LRM of each pair of cuts are given, V in the constraints can be eliminated.
 - Determined by randomly generating cuts' initial positions.

Conflicts Removal Techniques

[1] Y. Du, et al., "Hybrid lithography optimization with e-beam and immersion processes for 16nm 1D gridded design," ASP-DAC 2012.
[2] Y. Ding, et al., "Throughput optimization for SADP and e-beam based manufacturing of 1D layout," DAC 2014.

Advanced Lithography Technologies

$G_c = (V_c, E_c)$

MWVC

Technique Candidates	Complementary E-Beam	Multiple Patterning Lithography	MPL+E-Beam
Optimization Model	minimum weighted node cover	k-coloring	minimum odd cycle cover

Proposed Framework

- Introduction
- Techniques to Print Cuts with 193i

Experimental Results

Conclusion

ASP-DAC 2017

Comparison with ILP Formulation

	DAC'14		Ours(<i>n</i> _s =2)		-
Design	cost	CPU(s)	cost	CPU(s)	$cost = \omega e + ext$
50	7053	0.09	6127	0.02	Lal #E Doom outo
100	12106	2.37	9768	0.02	<i>e</i> . #⊏-Deam cuts
150	18236	4.08	14382	0.03	<i>ext</i> : extended wires' length
200	24244	0.04	22515	0.05	ω: 500
250	29824	4.02	29678	0.09	
300	34903	4.88	37785	0.13	
1000	134560	1144.65	128635	1.47	
2000	260623	623.99	246057	3.36	
4000	519447	1866.07	501905	15.83	
8000	1091424	12975	1019417	65.88	
avg.	213242	1662.52	201627	8.69	achieved 200x speedup
ratio	1	1	0.946	0.005	achieved 200x speedup

Results with Different *n_s*

Conclusion

- Propose a framework to eliminate the conflicts between cuts with cut redistribution, cut insertion and advanced lithography technologies.
- With fixed LRM, the cut redistribution problem can be formulated as a min-cost flow problem.
- E-Beam throughput optimization problem is formulated as a minimum weighted node cover problem.
- Achieve **200x** speedup.

Q&A