An Efficient Algorithm for Stencil Planning and Optimization in E-Beam Lithography(EBL)

Jiabei Ge¹, Changhao Yan¹, Hai Zhou², Dian Zhou³, Xuan Zeng¹

State Key Laboratory of ASIC & Systems, Microelectronics Department, Fudan University, China
Electrical Engineering and Computer Science Department, Northwestern University, U.S.A.
Electrical Engineering Department, University of Texas at Dallas, U.S.A.

Outline

Introduction

- Problem Formulation
- Geometry-Frequency Balanced Algorithm
- Experimental Results
- Conclusion

Outline

Introduction

- Problem Formulation
- Geometry-Frequency Balanced Algorithm
- Experimental Results
- Conclusion

Next generation lithography for sub-22 nm

Multiple patterning lithography (MPL) :

- widely used, expensive,
- difficult on the alignment requirement

Extreme ultra violet (EUV) lithography :

not ready for volume production

Electron beam lithography (EBL) :

maskless, low throughput

Electron beam lithography (EBL)

Variable Shaped Beam (VSB):

• Print one **rectangle** by one shot

Character Projection (CP) :

- Print one **character** by one shot
- A designed stencil

 \bigcirc

Overlapping-aware Stencil Planning (OSP) 1-D OSP :

- the character height and vertical blanks are equal
- often used in standard cell designs

2-D OSP :

horizontal and vertical blanks of a character may be different

Outline

Introduction

Problem Formulation

- Geometry-Frequency Balanced Algorithm
- Experimental Results
- Conclusion

Problem Formulation(1/2)

Given:

- An empty stencil
- A character set

Output :

• A designed stencil with characters on it

Problem Formulation(2/2)

Given:

- An empty stencil
- A character set C

Object:

- Obtain a subset $C_s \in C$ to be placed on the stencil
- Minimize the total shooting number S

Satisfy:

- Any character $c_i \in C_s$ can be located in the boundary of the stencil
- Any two characters c_i and c_j are not overlapped except at the blank area.

$$S = \sum_{c_i \in (C-C_s)} \underbrace{t_i \cdot vsb_i}_{i} + \sum_{c_i \in C_s} \underbrace{t_i \cdot 1}_{i}$$

- S the sum of shots by VSB and CP
- C_s the set of characters on the stencil
- c_i the character i
- t_i the count of c_i appeared in layout
- vsb_i the shot number of the character ci by VSB(the number of rectangles inside the pattern)

Outline

Introduction

- Problem Formulation
- Geometry-Frequency Balanced Algorithm
- Experimental Results
- Conclusion

Properties in 2D-OSP

Geometry

- More overlapping
- More characters on stencil
- Better design

Frequency

- Complex pattern inside
- More reduction of shots
- Better design

ber

$$S = \sum_{c_i \in (C-C_s)} t_i \cdot vsb_i + \sum_{c_i \in C_s} t_i \cdot 1 = \sum_{c_i \in C} t_i \cdot vsb_i - \sum_{c_i \in C_s} t_i \cdot (vsb_i - 1)$$

Previous Works

[3] B. Yu, et al. "E-blow: E-beam lithography overlapping aware stencil planning for mcc system", DAC, 2013.

Sequence Pair(SP) model and simulated annealing framework

[4] J. Kuang and E.F.Y. Young. "Overlapping-aware throughputdriven stencil planning for e-beam lithography", ICCAD, 2014.

A novel optimization flow

Both of them put emphasis on the **Geometry** to improve the number of characters on the stencil, its effectiveness of saving shot number is limited.

The work in [4]

For geometry property

- Pre-packing for the similar characters
- Bin-packing algorithm

Skyline:

- Top bound of the characters
- Parallel to the horizontal axis

13

The work in [4]

For frequency property

 An outside loop to change the number of candidate characters

An Example in [4]

Design 2 is better than 1 as more characters is selected.

Character A, B, C, D and E are selected by the outside loop.

By bin-packing, the solution by [4] is design 2.

The solution by [4]

An Example in [4]

Design 1 is better than 2 as shot number of 1 is less than 2 by the given t_i and vsb_i . Design 2 is the more reasonable solution.

Motivation

Defects in [4]

- A loop to combine the character properties of geometry and frequency may cause unreasonable solutions.
- Pre-packing characters is suspectable.

How to do better on 2-D OSP?

Geometry-Frequency Balanced Algorithm

Use a new merit f/A to select best character without the outside loop

 Use 2-D bin-packing algorithm to insert each selected character into the stencil without pre-packing

Merit f/A for choosing character

f/A:

- The higher frequency per unit area, the more shots will be saved
- Frequency :

f – the given frequency of each character

$$t_i = t_i \cdot (vsb_i - 1)$$

• Geometry :

- A the occupied area of each selected character
 - environmental related and influenced by characters nearby
 - estimated accurately by the geometry property of the

characters

Merit f/A for choosing character

Occupied area:

- Overlap A_o
- Locked area A_L
- Estimated area A_E

$$A = \frac{A_0}{2} + A_1 + A_E$$

Estimate A_E by skyline

Estimate top area A_{ET} by skyline

Estimate left area A_{EL} by skyline

Left area - A_{EL}:

- Left blank
- Waste area

Right area - A_{ER}:

- Right blank
- Waste area

Merit f/A for choosing character

24

Flow of our method

1. Find location:

• Choose the lowest skyline

2. Choose the best character :

• The best character is the one with largest f/A

3. Place the character into the stencil:

- Use bin-packing algorithm to insert the character and update the skyline for the next insert
- Go back to step 1 until the stencil cannot be inserted any other character

Outline

Introduction

- Problem Formulation
- Geometry-Frequency Balanced Algorithm
- Experimental Results
- Conclusion

Experimental Results

- Implemented in C++
- Performed on a Linux machine with 2.5GHz CPU and 64GB memory
- Benchmarks are from [4]

Experimental Results

Number of characters on stencil

Our method is 27% better than the solver of reference [3] and 11% better than the solver of reference [4] on average.

28

Experimental Results

Number of shots

Our method achieves a significant saving over [3] and [4], for their results are 3.41 and 2.30 times that of ours on average.

Conclusion

Simple yet Effective method

- The new merit have a strong connection with the properties of 2-D OSP
- Effective approach to estimate the occupied area of the candidate character
- Achieved better solution for all benchmarks

