

Design of Multiple Fanout Clock Distribution Network for Rapid Single Flux Quantum Technology

Naveen Katam

Motivation

- RSFQ circuits are made of Shunted Josephson Junctions and inductances.
- Any RSFQ cell can only drive one other cell and for a larger fanout "Splitter" cells are to be used.
- RSFQ circuits are gate-level pipelined and need clock for every gate implying at least one splitter cell required for every gate.
- Reduction in the number of splitter → reduction in the area and the power consumption of the over circuit.

Basic Convention: Standard Protocol

 RSFQ Basic Convention: Arrival of an SFQ pulse -> '1' Absence of a pulse -> '0'

P. Bunyk , K. Likharev and D. Zinoviev "RSFQ logic/memory family: A new technology: Physics and devices", Int J. High Speed Electron. Syst., vol. 11, no. 1, pp.257 -306 2001

Clock Distribution Network (widely used)

□Concurrent-Flow clocking

□Counter-flow clocking

Clock Distribution network

Cell₄

Distribution of clock at the same time

Splitter

(a) Splitter implementation

(b) Pulse propagation (simulation result)

RSFQ Gate and interface JTL

OR gate with JTL interface. (a) Core of the gate (b) JTL interface

Algorithm: Modification of Interface

At the output of clock network, connect one more cell (incrementing					
fanout of splitter cell by one)					
IF the output cannot be read by all receiver cells					
Increase the bias current and go to 2 (cannot go beyond the sum of					
critical currents of both junctions)					
ELSE					
Calculate yield of cell					
IF yield is acceptable					
Store the solution for current fanout and go to 1					
ELSE					
Increase critical current (Ic) of JJs					
IF new Ic is beyond the margin of Ic of base cell					
Cannot obtain better solution than previous solution					
Terminate					
Go to 2					

Test structures

Results Comparison

Test Structure		FO 1 (a) baseline		FO 2 (b)	FO 3 (c)
Delay (ps)	C2FS		23.1	11	10
	C2FQ		29	16	14
Static power (μW)			12.3	11.4	10.5
Area	# of JJs		81	75	69
	Inductance (pH)		422	390	358
	Approx. (µm²)		1112	1014	916

C2FS – Clock to final Splitter Output C2FQ - Clock to Q value of final cell in the structure

Margins

Yield

			OR	yield
Fanout	Bias current (I _b)	Critical current of JJs (I _c)	Margin based	Monte Carlo
1	100µA	130µA	0.999	0.999
2	150μΑ	130µA	0.999	0.972
3	250μΑ	150μΑ	0.981	0.865

Conclusion

- Yield suffers as we increase the fanout count.
- If the process variations can be brought low, fanout>1 is realizable for splitter.
- With some modification of the algorithm, we can get greater fanout for general RSFQ cells.