22nd Asia and South Pacific Design Automation Conference (ASP-DAC 2017) Special Session 4S: Invited Talk

Design Considerations and Clinical Applications of Closed-Loop Neural Disorder Control SoCs

Chung-Yu (Peter) Wu

Biomedical Electronics Translational Research Center

Department of Electronics Engineering National Chiao Tung University, Taiwan

Outline

- I. Introduction: Parkinson's Disease and epilepsy
- II. System Architecture and Design Considerations
- **III. Experimental Results**
- V. Future Development

Outline

I. Introduction

II. System Architecture and Design Consideration

- III. Experimental Results
- IV. Future Development

Parkinson's Disease and Epilepsy

Parkinson's disease and epilepsy are common neurological disorders.

PD: 1%~2% of the people older than 65. Epilepsy: 70 million people worldwide.

Parkinson's disease is caused by the death of dopamine-generating cells in the substantia nigra (SN). The movementrelated symptoms include shaking, rigidity, slowness of movement, and difficulty with walking and gait.

Parkinson's Disease and Epilepsy

Epileptic seizures are caused by sudden excessive electrical discharges in a group of cortical neurons. Seizure Onset

Courtesy of Prof. Dr. Yue-Loong Hsin

Open-Loop VS Closed-Loop Neuromodulation

- Open-loop DBS neuromodulation system leads to higher power dissipation, frequent battery replacement, and overstimulation symptoms.
- The closed-loop DBS system composed of neural signal acquisition, bio-signal processor, and biphasic stimulator.

Open-Loop VS Closed-Loop Neuromodulation
➤ The closed-loop epileptic seizure control system

Outline

I. Introduction

II. System Architecture and Design Considerations III. Experimental Results IV. Future Development

A. Closed-loop PD DBS system for pre-implant Evaluation

A. Closed-loop PD DBS system for pre-implant Evaluation

- The Local Field Potential (LFP) is sensed and digitized by the bio-signal acquisition unit using TI ADS1299.
- The digitized LFP data are then processed by a processor in the NI platform to calculate the β-band power.
- Once the β-band power exceeds the preset threshold, the stimulator using NI 9269 generates the patient-specific 0.1-3V biphasic voltage stimulations.

The closed-loop DBS system meets the IEC 60601-1 for medical electrical equipment.

A. Closed-loop PD DBS system for pre-implant Evaluation

- The β-band power of LFP is an efficient bio-maker for closed-loop PD DBS system.
- The extraction of β-band power spectral density is implemented by a decimation-in-frequency FFT algorithm in the NI platform.

A. Closed-loop PD DBS system for pre-implant Evaluation

Specifications of the Stimulator NI 9269:

- 5~130Hz programmable stimulation frequency
- 0~3v programmable stimulation voltage
- Stimulation latency <0.5sec</p>

B. Closed-loop implantable SoC for seizure control on Rate

for real-time epileptic seizure control," *IEEE J. Solid-State Circuits*, vol. 49, no. 1, pp. 232-247. Jan.

2014

3

B. Closed-loop implantable SoC for seizure control on Rate

- The iEEG (ECoG) is sensed by a low-noise, low-power, and programmable gain pre-amp and digitized by a delta-modulated SAR ADC.
- The digitized iEEG are then processed by a specific algorithm for seizure detection in the bio-signal processor.
- Once the seizure is detected, the stimulator generates a fixed
 30µA biphasic stimulation current to suppress the seizure onset.

The wireless power and the MedRadio-band transceiver for bilateral data telemetry are implemented to extend device lifetime, to provide essential information for medical doctors., and to enable the control of implanted device from outside.

B. Closed-loop implantable SoC for seizure control on Rate Feature Extraction of Seizure Detection:

Seizures

- Spike wave discharges (SWD)
- Non-seizures
 - Wakefulness (WK)
 - Slow-wave sleep (SWS)
 - Artifact

15

B. Closed-loop implantable SoC for seizure control on Rate Features of Brain Waves:

	Frequency band (Hz)	Entropy Detection Threshold	
WK	No specific	1	
SWD	7-11 (Band1) 15-18 (Band2)	0.7	
sws	0.4-4	0.85	
Artifact	Random	0.9	

Outline

- I. Introduction
- II. System Architecture and Design Considerations
- **III. Experimental Results**
- IV. Future Development

III. Experimental Results A. Closed-loop PD DBS system for pre-implant Evaluation

Measurement setup

18

A. Closed-loop PD DBS system for pre-implant Evaluation

Recorded LFP waveform and power spectral density

South Frankling

A. Closed-loop PD DBS system for pre-implant Evaluation

A. Closed-loop PD DBS system for pre-implant Evaluation

The biphasic constant-voltage stimulation waveforms

- A. Closed-loop PD DBS system for pre-implant Evaluation
- Stimulator changing voltage

- A. Closed-loop PD DBS system for pre-implant Evaluation
- System demonstration Closed-loop DBS

A. Closed-loop PD DBS system for pre-implant Evaluation

Performance summary

	Parameters	Experimental results
LFP signal acquisition unit	Input common range	5V
	Input referred noise	1 <i>µ</i> Vpp
	CMRR	110dB
	ENOB	21.48
Biphasic constant voltage stimulator	Stimulation pulse width	60 µ s
	Stimulation frequency	15-130Hz
	Stimulation voltage	0.1-3V

24

B. Closed-loop implantable SoC for seizure control on Rate

Animal Experiment :

Recording, w/ detection, w/o stimulation

B. Closed-loop implantable SoC for seizure control on Rate

Acquisition, Detection & Stimulation:

Agitent Technologies	InfinitVision DSO-X 3 Onited Stores	034A a Oscillatorapa	350 MHz 4 05e/x	HEEA Doom
1 3809/ 2 2709/ 3	4 2 50V/	-20.00# 2.000s/	(0.0)	F 1 6607
AFE	- Internet			🔆 Agilent
output	diameter and		and supported	調整
Carlot and the second second second	-> Seizure <-		An Australia Martin	12.5654/5
Wireless	Occurrence			10.0.1
Signal				00 10.0.1
Materia Antist Arritro	diament division was		No. of Lot of	
	and the particular fit is a second	COLUMN AND AND AND AND AND AND AND AND AND AN		
Stimulation	Stimulation on			
Enable				
2 Enable				
2 Enable				
2 Enable			A.	NJX II

- **B. Closed-loop implantable SoC for seizure control on Rate**
- Animal Experimental Results :

B. Closed-loop implantable SoC for seizure control on Rate

Performance summary

	Parameters	Experimental Results	
Signal acquisition unit	Input-referred noise	5.23 <i>µ</i> Vrms	
	NEF	1.77	
Bio-signal processor	Accuracy	92%	
	Latency	0.8s	
Stimulator	Stimulation current	30 µ A	
Wireless telemetry	Rectifier power conversion efficiency	84%	
	Data rate	4M bps	
	Total power consumption	2.8mW (stanby)	

28

Outline

- I. Introduction
- II. System Architecture and Design Considerations
 III. Experimental Results
 - V. Future Development

IV. Future Development

A. Closed-loop PD DBS system

- From the prototype of closed-loop PD DBS system for pre-implant evaluation to SOC
 - The pre-implant evaluation system will be used in clinical trial.
 - The measured data will be used to design the SOC for both preimplant evaluation system and implantable system.
 - SoC is more power efficient with smaller area and it is suitable for implantable system.
 - The wireless power transmission is important to avoid frequent battery replacement.

The wireless power will be used to operate the SOC and charge the implantable rechargeable Li battery.

The wireless data telemetry is used to transmit LFP out and send commands in for medical doctors.

IV. Future Developemnt

A. Closed-loop PD DBS system

System architecture of next generation closed-loop PD DBS SOC

IV. Future Development

B. Closed-loop implantable SoC for seizure control

From animal test to clinical trial

- Up to 3mA stimulation current on cortical surface is required to control human epileptic seizures.
- Channel number will also be increased to 16 to cover the human brain seizure onset sites.
- To reduce device area, only one pair of coil is developed for wireless power and bilateral data telemetry and rechargeable battery should be integrated in the implantable device.
- The designed closed-loop SOC for epileptic seizure control will be used in pre-implant brain evaluation/mapping system and implantable system.

III. Future Development

B. Closed-loop implantable SoC for seizure control

From animal test to clinical trial

Biomedical Electronics Translational Research Center

Thanks for your attention !

