A Novel Data Format for Approximate Arithmetic Computing

Mingze Gao, Qian Wang, Akshaya Nagendra, and Gang Qu

Electrical and Computer Engineering Department and Institute of Systems Research University of Maryland, College Park

Introduction

- # What is Approximate Computing (AC)?
 - Approximate (error) vs. accurate
- # Why we need AC?
 - Power/energy efficiency
- # Why AC works?
 - Many of the applications are error-tolerable, e.g. Machine Learning, Image/Signal Processing
 - Disable partial computation
- # AC at different level
 - Arithmetic, Software, Compiler, Architecture, Memory, and Circuit

Sec Lab Dr. Gang Qu (gangqu@umd.edu)

Approximate Arithmetic

Observation:

 Least Significant Bits (LSB) have much less contribution than Most Significant Bits (MSB) to the overall quality of the result.

Approach:

Compute accurately on MSB

Apply approximation on LSB

Approximate Arithmetic

Example: Compute S = A + B A = 0011 1010 0001 10002 B = 0101 1011 1011 10002

- Build a 16-bit approximate adder that[1]:
 8-bit accurate adder for high 8 bits
 - 8 OR gates for low 8 bits

shSec Lab

Error = 0.102% !

[1] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, "Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications," Circuits Syst. I Regul. Pap. IEEE Trans., vol. 57, no. 4, pp. 850–862, 2010.

We need a better approximate adder!

 $0000 \ 0000 \ 1111 \ 1001_2 = 249$

 $0000 \ 0000 \ 1011 \ 1000_2 = 184$

0000 0000 0111 1001₂ = 121 **Error = 18.4\%**

 $A = 0000 \ 0000 \ 0101 \ 1000_2$ $B = 0000 \ 0000 \ 1011 \ 1000_2$

However, what if the data is

Approximate Arithmetic

Approximate Arithmetic

- # What we have learned:
 - "static" approximate adder vs. "dynamic" data
- #Existing solutions:
 - Build additional discriminant circuit inside the approximate adder
- # Drawbacks:
 - Fail to deliver significant power savings
 Less accurate for multiplication

Approximate Integer Format

Contribution: a novel Approximate Integer Format (AIF) and the corresponding computation mechanisms # Desired properties of an ideal AIF From "static" to "dynamic" Cut-off the bitwidth of the operands Suitable for all arithmetic operations Provable error bound Applicable to fixed point arithmetic

-- Valid Block

- # AIF is based on the segmentation of operands.
 - An n-bit positive integer N is segmented into [n/k] blocks with k bits per block.
 - Example: n = 16, k = 4, there are 4 blocks.

A = 0000 1010 0001 10002

Definition 1: A valid block in a positive number is a block that has at least one '1' before or inside it.
A = 0000 1010 0001 00002

-- Sentinel Bits

Sentinel bits are used to truncate and round the less important bits to reduce bit-length of the operands
Definition 2: The ith sentinel bit st[i] of a number is defined as

 $st[i] = \begin{cases} 1, & block \ i \ is \ a \ valid \ block \\ 0, & block \ i \ is \ an \ invalid \ block \end{cases}$

--Precision Control

- Definition 3: The precision control 'pc' is the number of valid blocks in the number, from the leftmost one, that will be used in the computation.
- #Example:

 $1500_{10} = 0000 \ 0101 \ 1101 \ 1100_2 \ 800_{10} = 0000 \ 0011 \ 0010 \ 0000_2$

Both have 3 valid block, st = 0111
 If pc = 2, 2 blocks of each operand will be selected 150010 = 0000 0101 1101 11002 80010 = 0000 0011 0010 00002

-Rounding

When we use sentinel bits to truncate the valid blocks, rounding is needed

- # Two rounding techniques:
 - Classic rounding
 - For multiplication and division
 - Efficient rounding
 - For addition and subtraction

Classic Rounding

Definition 4: The classic rounding of a number N at the ith LSB means adding the ith bit to the (i+1)th bit setting ith bit and bits to its right to zero $# Example: N = 263_{10} = 0000 0001 0000 0111_2$ From the 3rd least significant bit • N = 0000 0001 0000 10002 From the 4th bit **N = 0000 0001 0000 0000**2

Efficient Rounding

Definition 5: The efficient rounding of A+B at the ith bit is

Atrunc + Btrunc + Cinround

Atrunc and Btrunc are obtained by truncating the i least significant bits from A and B
 Cinround = (Ai&Bi), AND ith bits of A and B

Efficient Rounding

To compute S = A + BA = 0011 1010 1001 10002 B = 0000 1011 1011 10002

S' = Atrunc + Btrunc + Cinround 0011 1010 + 1011 + 1

0100 0110

Truncate A and B Atrunc = 0011 1010 0000 00002 Btrunc = 0000 1011 0000 00002

-- Example

Compute round-off carry in Cinround = A7 & B7 = 1

S using efficient rounding: 0100 0110 0000 00002 = 1792010 Accurate S: 0100 0110 0101 00002 = 1800010

Approximate Integer Format

Given a 4-block operand A= b₃b₂b₁b₀.
 Only five possible values of A's sentinel bits st_a: 0000, 0001, 0011, 0111, 1111.

For the first four cases, the data A will be stored in following format:

$$\mathbf{st}_{\mathbf{a}}$$
 $\mathbf{b}_{\mathbf{2}}$ $\mathbf{b}_{\mathbf{1}}$ $\mathbf{b}_{\mathbf{0}}$

For the last case of 1111, A will be stored

$$st_a b_3 b_2 b_1$$

as:

AIF Arithmetic

- **Compute the sentinel bits of the result** $S: st_s = st_A | st_B$
- Truncate ith to (i-pc+1)th blocks of A and B to obtain A' and B', respectively
 - Suppose the leftmost '1' in st_s is in st[i], and we plan to pick pc valid blocks
- # Compute S' = A' + B' and Cout
- # Update st_s by $st_s[i+1] = C_{out}$
- Reformulate S in AIF using st_s and S'. Padding O's if necessary

AIF Arithmetic -- Addition Example

Original data A = 0011 1010 0001 10002 B = 0000 1011 1011 10002

Compute S' $0011 \ 1010 + 0$ $+ \ 1011 + 1$ $= \ 0100 \ 0110$

nSec Lab

		$\mathbf{\nabla}$	200	22.
C	om	pu'	te :	STs
÷	· · · ·		111	1
1.1 -		N. 13.	111	1
1.3	1	14 .1	111	1. 2
0		3.1		1.1
	10	1.17	111	1
			┶┶┶╺	

Reformulate S in AIF: 1111 0100 0110 00002 = 1792010 Accurate S: 0100 0101 1101 00002 = 1787210

AIF Arithmetic --Multiplication

- Round the leftmost pc valid blocks of A and B into A' and B'
 Compute S' = A' * B'
 Compute sentinel bits st_S using st_A and st_B and carry out
 Shift and reformulate S in AIF using S'
 - and st_s. Padding O's if necessary

Error analysis

Let rounding error of A and B are era and erB, respectively.
Error of AIF based addition:
■ Eradd = 2*max(era, erB)
Error of AIF based multiplication:
■ era + erB + era*erB
■ era<<1, erB<<1, Ermul ≈ era + erB

Negative AIF

- # Deal with negative integer
- Cannot use previous equation to compute st
 Solution:
 - Re-define the valid block
 - A valid block in a negative number is a block that has at least one '0' before or inside it.
 - Replace logic OR with logic AND when computing st
 - Arithmetic operations remains the same

High level programming language

- # Introduce appropriate instructions and data type.
- #Incorporate it in compiler and ISA
- # Example: define apxint as the AIF data

Dr. Gang Qu (gangqu@umd.edu)

type

Compute in Caution

- Condition criterion, e.g. if, while condition
- Data value that the result is very sensitive to
- Functions that have periodical property, e.g. sin, cos, and modulo operation

Experiment Results: HW Cost

Overhead Comparison of Arithmetic Units and The Sentinel Bits Computing Circuits

1		cells	area	power(nW)
	8-bit checker	10	23.93	61475.68
**	16-bit checker	17	39.89	132145.68
-	8-bit adder	91	212.12	752614.84
	16-bit adder	230	322.33	2234652.24
1	32-bit adder	498	1116.93	4818821.94
	8-bit multiplier	377	1037.62	2829745.1
-	16-bit multiplier	1406	4208.68	10815807.06
	32-bit multiplier	4916	15126.01	34033690.3

Fibonacci Sequence: Accuracy

#First 40 elements in Fibonacci Sequence

- A number is sum of its previous two: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- Test the error propagation

#	pc=2	pc=3	pc=4	#	pc=2	pc=3	pc=4	#	pc=2	pc=3	pc=4
1~13	0	0	0	22	-0.02732	3.49E-05	0	31	-0.02291	-0.00035	2.30E-06
14	-0.00984	0	0	23	-0.02692	0	0	32	-0.02267	-0.00059	-8.51E-06
15	-0.01317	0	0	24	-0.02707	1.33E-05	0	33	-0.02276	-0.0005	-4.38E-06
16	-0.01691	0	0	25	-0.02912	0.000404	8.24E-06	34	-0.02273	-0.00053	-5.96E-06
17	-0.01858	0	0	26	-0.03225	0.000336	1.02E-05	35	-0.02274	-0.00052	-5.36E-06
18	-0.01985	0	0	27	-0.0375	0.000362	9.44E-06	36	-0.02274	-0.00052	-5.59E-06
19	-0.02173	-0.00044	0	28	-0.03947	0.000352	9.72E-06	37	-0.0328	-0.0001	1.05E-06
20	-0.02905	0.000183	0	29	-0.04118	0.000356	9.61E-06	38	-0.03621	-0.00046	-5.53E-06
21	-0.02625	-5.65E-05	0	30	-0.04205	0.000354	9.66E-06	39	-0.04003	-0.00064	-3.02E-06
								40	-0.04174	-0.00077	-3.98E-06

Real Life Application

Which one is the original image?

PSNR = 41.76

PSNR = 89.64

--IDC

PSNR =116.29

original image

Dr. Gang Qu (gangqu@umd.edu)

25

Real Life Applications

and the second second

-Quality

				1	
AIF	IDCT	KNN	FFT	Kmeans	SVM
modules					
32_8_2	41.7579	92.9%	0.0081	1.125%	60.94%
32_8_3	64.6398	93.2%	2.79E-04	0.125%	85.11%
32_8_4	89.8324	93.1%	1.61E-05	0	85.98%
32_8_5	112.0872	93.2%	3.02E-06	0	85.59%
32_8_6	116.2944	93.2%	7.11E-08	0	86.42%
baseline	116.2949	93.2%	0	0	86.42%
Error		Classification		miss-	Classification
Metric	PSNR	accuracy	ARES	clustered%	accuracy

and the second second second second second

Final Result --Power Savings Normalized power consumptions 1.2 1 0.8 0.6 0.4 0.2 n idct knn fft kmeans sym 32 8 2 **32_8_3 32_8_4 32_8_5 32 8 6** accurate shSec Lab Dr. Gang Qu (gangqu@umd.edu)

Thank you!

