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Introduction

What is Approximate Computing (AC)?
Approximate (error) vs. accurate

Why we need AC?
Power/energy efficiency 

Why AC works?
Many of the applications are error-tolerable, e.g. 
Machine Learning, Image/Signal Processing

Disable partial computation

AC at different level
Arithmetic, Software, Compiler, Architecture, 
Memory, and Circuit
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Approximate Arithmetic

Observation:
Least Significant Bits (LSB) have much less 
contribution than Most Significant Bits 
(MSB) to the overall quality of the result.

Approach:
Compute accurately on MSB 

Apply approximation on LSB 
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Approximate Arithmetic

Example: Compute S = A + B

Build a 16-bit approximate adder that[1]:
8-bit accurate adder for high 8 bits

8 OR gates for low 8 bits

Dr. Gang Qu  (gangqu@umd.edu) 4

A = 0011 1010 0001 10002

B = 0101 1011 1011 10002

0111 1010 0111 10012 = 31353

+  0101 1011 1011 10002 = 23480

=  1101 0101 1111 1001
2 
= 54777

Error = 0.102% !

[1] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired imprecise computational blocks for efficient VLSI 
implementation of soft-computing applications,” Circuits Syst. I Regul. Pap. IEEE Trans., vol. 57, no. 4, pp. 850–862, 2010.
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Approximate Arithmetic

However, what if the data is 

We need a better approximate adder !
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A = 0000 0000 0101 10002

B = 0000 0000 1011 10002

0000 0000 0111 10012  = 121

+  0000 0000 1011 10002  = 184

=  0000 0000 1111 1001
2  
= 249

Error = 18.4% !
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Approximate Arithmetic

What we have learned:
“static” approximate adder vs. 
“dynamic” data

Existing solutions:
Build additional discriminant circuit inside 
the approximate adder

Drawbacks:
Fail to deliver significant power savings

Less accurate for multiplication
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Approximate Integer Format

Contribution: a novel Approximate 
Integer Format (AIF) and the 
corresponding computation mechanisms

Desired properties of an ideal AIF
From “static” to “dynamic”

Cut-off the bitwidth of the operands

Suitable for all arithmetic operations

Provable error bound

Applicable to fixed point arithmetic
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Preliminary -- Valid Block

AIF is based on the segmentation of 
operands. 

An n-bit  positive  integer  N  is segmented 
into [n/k] blocks with k bits per block. 

Example: n = 16, k = 4, there are 4 blocks.

A = 0000 1010 0001 10002

Definition 1: A valid block in a positive 
number is a block that has at least one 
‘1’ before or inside it. 
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A = 0000 1010 0001 00002
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Preliminary -- Sentinel Bits

Sentinel bits are used to truncate and 
round the less important bits to reduce 
bit-length of the operands

Definition 2: The ith sentinel bit st[i] of 
a number is defined as 

�� � � 	 �1, 							
��
	�	��	�	��
��		
��
						0, 							
��
	�	��	��	����
��		
��
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Preliminary           --Precision Control

Definition 3: The precision control ‘pc’ is 
the number of valid blocks in the 
number, from the leftmost one, that will 
be used in the computation.

Example:

Both have 3 valid block, st = 0111

If pc = 2, 2 blocks of each operand will be 
selected
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150010 = 0000 0101 1101 11002

80010 = 0000 0011 0010 00002

150010 = 0000 0101 1101 11002

80010 = 0000 0011 0010 00002
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Preliminary --Rounding

When we use sentinel bits to truncate 
the valid blocks, rounding is needed

Two rounding techniques:
Classic rounding

For multiplication and division

Efficient rounding
For addition and subtraction
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Classic Rounding

Definition 4: The classic rounding of a 
number N at the ith LSB means 

adding the ith bit to the (i+1)th bit

setting ith bit and bits to its right to zero

Example: N = 26310 = 0000 0001 0000 01112

From the 3rd least significant bit 
N = 0000 0001 0000 10002

From the 4th bit
N = 0000 0001 0000 00002
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Efficient Rounding

Definition 5: The efficient rounding of 
A+B at the ith bit is 

Atrunc + Btrunc + Cinround

Atrunc and Btrunc are obtained by truncating 
the i least significant bits from A and B

Cinround = (Ai&Bi), AND ith bits of A and B
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Efficient Rounding         -- Example
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To compute S = A + B
A = 0011 1010 1001 10002

B = 0000 1011 1011 10002

Truncate A and B
Atrunc = 0011 1010 0000 00002

Btrunc = 0000 1011 0000 00002

Compute round-off carry in
Cinround = A7 & B7 = 1

S’ = Atrunc + Btrunc + Cinround

0011 1010
+             1011 + 1
=    0100 0110

S using efficient rounding:
0100 0110 0000 00002 = 1792010

Accurate S:
0100 0110 0101 00002 = 1800010
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Approximate Integer Format

Given a 4-block operand A= b3b2b1b0.
Only five possible values of A’s sentinel bits 
sta: 0000, 0001, 0011, 0111, 1111. 

For the first four cases, the data A will be 
stored in following format:

For the last case of 1111, A will be stored 
as:
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sta b2 b1 b0

sta b3 b2 b1
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AIF Arithmetic              --Addition

Compute the sentinel bits of the result 
S:	���� ���	|	���
Truncate ith to (i-pc+1)th blocks of A and B to 
obtain A’ and B’, respectively

Suppose the leftmost ‘1’ in ��� is in �����, and we 
plan to pick pc valid blocks 

Compute S’ = A’ + B’ and Cout

Update ��� by ��� � � 1 � ����
Reformulate S in AIF using ��� and S’. Padding 
0’s if necessary
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AIF Arithmetic   --Addition Example
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Original data
A = 0011 1010 0001 10002

B = 0000 1011 1011 10002

Data in AIF
A’ = 1111 0011 1010 00012

B’ = 0111 1011 1011 10002

Compute sts:
1111

or      0111
=        1111

Compute S’
0011 1010 + 0

+             1011 + 1
=    0100 0110

Reformulate S in AIF:
1111 0100 0110 00002 = 1792010

Accurate S:
0100 0101 1101 00002 = 1787210
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AIF Arithmetic         --Multiplication

Round the leftmost pc valid blocks of A 
and B into A’ and B’

Compute S’ = A’ * B’

Compute sentinel bits st using st! and st" and carry out

Shift and reformulate S in AIF using S’ 
and st . Padding 0’s if necessary
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Error analysis 

Let rounding error of A and B are erA

and erB, respectively.

Error of AIF based addition:
Eradd = 2*max(erA, erB)

Error of AIF based multiplication:
erA + erB + erA*erB

erA<<1, erB<<1, Ermul ≈ erA + erB
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Negative AIF

Deal with negative integer
Cannot use previous equation to compute st

Solution:
Re-define the valid block

A valid block in a negative number is a block 
that has at least one ‘0’ before or inside it.

Replace logic OR with logic AND when 
computing st

Arithmetic operations remains the same
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High level programming language

Introduce appropriate instructions and 
data type.

Incorporate it in compiler and ISA

Example: define apxint as the AIF data 
type
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int main(){
apxint a = 2341;
apxint b = 546;
apxint sum = a + b, prod = a * b;
…

}
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Compute in Caution

Condition criterion, e.g. if, while 
condition

Data value that the result is very 
sensitive to

Functions that have periodical property, 
e.g. sin, cos, and modulo operation
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Experiment Results: HW Cost

Overhead Comparison of Arithmetic Units and 
The Sentinel Bits Computing Circuits
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Fibonacci Sequence: Accuracy
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First 40 elements in Fibonacci Sequence
A number is sum of its previous two: 1, 1, 2, 
3, 5, 8, 13, 21, 34, …

Test the error propagation
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Real Life Application          --IDCT
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Which one is the original image?

(a)

(d)

(b)

(c)

original image

PSNR = 41.76 PSNR = 89.64

PSNR =116.29
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Real Life Applications --Quality
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Final Result              --Power Savings
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Thank you!
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