
ApproxEye: enabling approximate
computation reuse for micro-robotic

computer vision

Xin He, Guihai Yan, Faqiang Sun, Yinhe Han and Xiaowei LI
Speaker: Yinhe Han

State Key Laboratory of Computer Architecture,
Institute of Computing Technology , Chinese Academy of Sciences

Inefficiency of nowadays micro-sized system

Existing micro-sized computing system (e.g.
micro-robotics) fails to meet targeted
performance requirement
 Due to:

Limited
Performance

Power Constraint
-Controllable thermal

and standby time

Weight
Constraint

-light-weighted
computation engine

Energy efficient computing

Near threshold
Computing

Heterogeneous
Computing

Emerging
Technology

Approximate
Computing!

Efficiency

Prior ways to boost system performance

To perform complex tasks like rescuing,
tracking abnormal object tracking and so on
 Computation Offloading

• Responsiveness and bandwidth
 Customized accelerator

• Portability issue
 Energy efficient scheduling

• Limited achievable speedup

Approximate Computing(Domain specific approach)

 Leveraging intrinsic application resilience to
improve efficiency

DCT Image Compression

Outcome: 2.82% reduction on PSNR
Performance: 31.44% Improvement

Machine Learning

Outcome: 1.3% accuracy reduction
Performance: 4.97X Improvement

Original method Approximate method

E.g.

By using inexact multiplier By reducing excess iterations

Approximate Computing opens another road
towards computing efficiency

Kernel of
Optical flow:

Focusing on accelerating the computer vision
algorithm through approximate computing：

We select optical flow to conduct approximate
computing

Intrinsic error
tolerance

Widely used

Enormous
computations

Why vision
application?

Targeting and observation

We select optical flow to conduct approximate
computing
 Optical flow is widely used for visual surveillance,

motion estimation, object tracking.
 Its computation kernel is a typical kind of operations

seen in computer vision

Optical flow as target killer application

74.20%的相似计算量
[10%的输出误差]

Observation

 Could we leverage this observations
to accelerate computing?

To reuse the prior computations:
 Exact reuse scheme (100% accurate)

• Traditional computation reuse
– Fail to reuse similar computations

 Approximate reuse scheme (allow accuracy degradation)
• RACB scheme

– Fail to fully extract reuse opportunities
• Proposed ApproxEye scheme

– Significance aware computing
– Adaptive reuse granularity selection

For traditional reuse scheme
Traditional computation reuse scheme
 Leveraging computation locality to reuse computations

• But the tight requirement is used for 100% precision

“Memorize” computation history

Input：

Output：

Input vector(I1)
Input vector(I2)
Input vector(I3)

……

Output vector(O1)
Output vector(O2)
Output vector(O3)

Input vector(I1)

……
Input vector(I2)
Input vector(I3)

Output vector(O1)

……
Output vector(O2)
Output vector(O3)

Input Params Output Params

History lookup table

Phase 1:

For traditional reuse scheme
Traditional computation reuse scheme
 Leveraging computation locality to reuse computations

• Require all inputs of a reused item is exactly equal to
underlying computation

“Reusing” prior computations

Input vector(I1)

……
Input vector(I2)
Input vector(I3)

Output vector(O1)

……
Output vector(O2)
Output vector(O3)

Input Params Output Params

Input vector

=
Input vector

=
Output vector(O2)Underlying：

Input vector(I1)
Input vector(I2)

[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]

Phase 2:

Limitation of prior approximate reuse scheme

Prior approx reuse（e.g. RACB scheme [islped2005]）
• Reuse requirement：the equality of Most Significant Bits

 It’s non-trivial to determine
the length of LSBs mask
 A unified mask for all different
inputs limits the effectiveness
 Limited application scope
 Predetermined reused granularity

111011110011

Input vector Output

110111110110 10

110101110110 10

…… ……

000110111110 50

MSBs MASKing LSBs

Significance aware

Unified mask

29 62

Sobel基准程序
Equality

Cons：

To fully extract the potential of computation
reuse, ApproxEye proposes both
 “Simple but effective” significance aware

quantification
 Adaptive reuse granularity selection

Workflow of ApproxEye
① Fully extract computation with high reuse

possibilities
② Based on statistical analysis, the optimal reuse

granularity is specified
③ Calculate input significance and set masks adaptively

Proposed ApproxEye scheme

Fully extract computation with high reuse
possibilities
 Prohibit missing any reuse opportunities from history

Solution：Enhanced version of
Dynamic Programing

Questions：extracting all the longest
similar substring

• Mark the relative position of similar items
• Traverse route map to obtain the substrings

Proposed ApproxEye scheme

Given: different optical flow kernel “multiply add” sequences, e.g. S1 and S1
Determine: similar substring inside both S1 and S2

S1:

S1:

Once the similar computation is obtained,
statistically analysis is conducted to
 determine reuse granularity that gives highest speedup

Amount of substring extracted
decreases exponentially

Two multiply-add operations
gives highest speedup

Proposed ApproxEye scheme

Speedup under different granularities Amount of substring extracted

Calculate input significance and set masks
adaptively

Maximum
deviation allowed

（10%）

Mean value of
consecutive string

multiplier
Input

significance

This simple but faithful significance estimation benefits from:
1)This simple form can improve the effectiveness of runtime estimation
2)The significance can be easily used for adaptive LSB masking

Proposed ApproxEye scheme

Parallel search tailored for approximate
computing

TCAM for Parallel Matching

• Adaptively set don’t care
masks based obtained significance

Pro 1：Significance aware

• Improve the latency for
large amount of data

Pro 2： Parallel Matching

• Consolidate similarity calculation,
checking, and searching

Pro 3：Consolidation

Reducing the time consumption

创新成果二：可变粒度的近似计算方法

Experimental setup
 Target applications

• Algorithm：State of the art Lucas Kanade pyramid iterative
optical flow algorithm

• Dataset：open source data from Microsoft redmond

 Performance and power simulation
• Latency of multiply-add operations is obtained using Cadence

tool flow in TMSC 45nm PTM model
• The latency and power of TCAM is simulated from TCAM

model based on Cacti

Experiment

The amount computation which can be
reused by ApproxEye
 Compared with oracle solution and RACB scheme

Only 18.22% less

24.41% higher

Experimental result

Speedup achieved by ApproxEye

47.13% speedup
on average

• Unfaithful significance quantification
using unified deviation thresholds for all different inputs
• Select the reuse granularity arbitrarily,
miss the opportunities for partial reuse

Prior RACB approximate computing scheme：

Experimental result

Experimental result
TCAM power consumption VS conventional

cache

Comparable or less power than Cache

Conclusion
Approximate computing can exploit the

potential of computation reuse in computer
vision applications

To fully extract the potential of computation
reuse, one should take a deep look into data
distribution and make comprehensive
decisions

Moreover, the engine of approximate
computing should also be fine tuned for
efficiency

Thanks for listening!
Questions?

Xin He

State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences

(ICT, CAS)

	ApproxEye: enabling approximate computation reuse for micro-robotic computer vision
	Inefficiency of nowadays micro-sized system
	Energy efficient computing
	Prior ways to boost system performance
	Approximate Computing(Domain specific approach)
	Targeting and observation
	Optical flow as target killer application
	スライド番号 8
	For traditional reuse scheme
	For traditional reuse scheme
	Limitation of prior approximate reuse scheme
	Proposed ApproxEye scheme
	Proposed ApproxEye scheme
	Proposed ApproxEye scheme
	Proposed ApproxEye scheme
	创新成果二：可变粒度的近似计算方法
	Experiment
	Experimental result
	Experimental result
	Experimental result
	Conclusion
	Thanks for listening!

