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Inefficiency of nowadays micro-sized system

Existing micro-sized computing system (e.g. 
micro-robotics) fails to meet targeted 
performance requirement
 Due to: 

Limited
Performance

Power Constraint
-Controllable thermal 

and standby time

Weight 
Constraint

-light-weighted 
computation engine



Energy efficient computing

Near threshold 
Computing

Heterogeneous 
Computing

Emerging 
Technology

Approximate 
Computing!

Efficiency 



Prior ways to boost system performance

To perform complex tasks like rescuing, 
tracking abnormal object tracking and so on
 Computation Offloading

• Responsiveness and bandwidth
 Customized accelerator

• Portability issue
 Energy efficient scheduling

• Limited achievable speedup



Approximate Computing(Domain specific approach)

 Leveraging intrinsic application resilience to 
improve efficiency 

DCT Image Compression

Outcome: 2.82% reduction on PSNR
Performance:  31.44% Improvement 

Machine Learning

Outcome: 1.3%  accuracy reduction
Performance:  4.97X Improvement 

Original method Approximate method

E.g. 

By using inexact multiplier By reducing excess iterations 

Approximate Computing opens another road 
towards computing efficiency 



Kernel of 
Optical flow:

Focusing on accelerating the computer vision 
algorithm through approximate computing：

We select optical flow to conduct approximate 
computing

Intrinsic error 
tolerance

Widely used

Enormous 
computations

Why vision 
application?

Targeting and observation 



We select optical flow to conduct approximate 
computing
 Optical flow is widely used for visual surveillance, 

motion estimation, object tracking.
 Its computation kernel is a typical kind of operations 

seen in computer vision

Optical flow as target killer application 

74.20%的相似计算量
[10%的输出误差]

Observation

 Could we leverage this observations 
to accelerate computing?



To reuse the prior computations:
 Exact reuse scheme (100% accurate)

• Traditional computation reuse 
– Fail to reuse similar computations

 Approximate reuse scheme (allow accuracy degradation)
• RACB scheme

– Fail to fully extract reuse opportunities
• Proposed ApproxEye scheme

– Significance aware computing
– Adaptive reuse granularity selection



For traditional reuse scheme 
Traditional computation reuse scheme
 Leveraging computation locality to reuse computations

• But the tight requirement is used for 100% precision

“Memorize” computation history

Input：

Output：

Input vector(I1)
Input vector(I2)
Input vector(I3)

……

Output vector(O1)
Output vector(O2)
Output vector(O3)

Input vector(I1)

……
Input vector(I2)
Input vector(I3)

Output vector(O1)

……
Output vector(O2)
Output vector(O3)

Input Params Output Params

History lookup table

Phase 1:



For traditional reuse scheme 
Traditional computation reuse scheme
 Leveraging computation locality to reuse computations

• Require all inputs of a reused item is exactly equal to 
underlying computation 

“Reusing” prior computations 

Input vector(I1)

……
Input vector(I2)
Input vector(I3)

Output vector(O1)

……
Output vector(O2)
Output vector(O3)

Input Params Output Params

Input vector

=
Input vector

=
Output vector(O2)Underlying：

Input vector(I1)
Input vector(I2)

[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ] [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ]

Phase 2:



Limitation of prior approximate reuse scheme 

Prior approx reuse（e.g. RACB scheme [islped2005]）
• Reuse requirement：the equality of Most Significant Bits

 It’s non-trivial to determine
the length of LSBs mask
 A unified mask for all different
inputs limits the effectiveness 
 Limited application scope
 Predetermined reused granularity

111011110011

Input vector Output

110111110110 10

110101110110 10

…… ……

000110111110 50

MSBs MASKing LSBs

Significance aware

Unified mask

29 62

Sobel基准程序
Equality

Cons：



To fully extract the potential of computation 
reuse, ApproxEye proposes both 
 “Simple but effective” significance aware 

quantification
 Adaptive reuse granularity selection

Workflow of ApproxEye
① Fully extract computation with high reuse 

possibilities
② Based on statistical analysis, the optimal reuse 

granularity is specified
③ Calculate input significance and set masks adaptively

Proposed ApproxEye scheme



Fully extract computation with high reuse 
possibilities
 Prohibit missing any reuse opportunities from history

Solution：Enhanced version of 
Dynamic Programing

Questions：extracting all the longest
similar substring

• Mark the relative position of similar items
• Traverse route map to obtain the substrings

Proposed ApproxEye scheme

Given:  different optical flow kernel “multiply add” sequences, e.g. S1 and S1
Determine: similar substring inside both S1 and S2

S1:

S1:



Once the similar computation is obtained, 
statistically analysis is conducted to
 determine reuse granularity that gives highest speedup 

Amount of substring extracted
decreases exponentially

Two multiply-add operations 
gives highest speedup

Proposed ApproxEye scheme

Speedup under different granularities Amount of substring extracted



Calculate input significance and set masks 
adaptively

Maximum 
deviation allowed

（10%）

Mean value of 
consecutive string 

multiplier 
Input 

significance

This simple but faithful significance estimation  benefits from:
1)This simple form can improve the effectiveness of runtime estimation
2)The significance can be easily used for adaptive LSB masking 

Proposed ApproxEye scheme



Parallel search tailored for  approximate 
computing

TCAM for Parallel Matching

• Adaptively set don’t care
masks based obtained significance 

Pro 1：Significance aware

• Improve the latency for 
large amount of data

Pro 2： Parallel Matching

• Consolidate similarity calculation, 
checking, and searching

Pro 3：Consolidation 

Reducing the time consumption

创新成果二：可变粒度的近似计算方法



Experimental setup
 Target applications

• Algorithm：State of the art Lucas Kanade pyramid iterative 
optical flow algorithm

• Dataset：open source data from Microsoft redmond

 Performance and power simulation
• Latency of multiply-add operations is obtained using Cadence 

tool flow in TMSC 45nm PTM model
• The latency and power of TCAM is simulated from TCAM 

model based on Cacti

Experiment



The amount computation which can be 
reused by ApproxEye
 Compared with oracle solution and RACB scheme

Only 18.22% less

24.41% higher

Experimental result



Speedup achieved by ApproxEye

47.13%  speedup 
on average

• Unfaithful significance quantification
using unified deviation thresholds for all different inputs 
• Select the reuse granularity arbitrarily, 
miss the opportunities for partial reuse

Prior RACB approximate computing scheme：

Experimental result



Experimental result
TCAM power consumption VS conventional 

cache

Comparable or less power than Cache



Conclusion
Approximate computing can exploit the 

potential of computation reuse in computer 
vision applications

To fully extract the potential of computation 
reuse, one should take a deep look into data 
distribution and make comprehensive 
decisions

Moreover, the engine of approximate 
computing should also be fine tuned for 
efficiency



Thanks for listening!
Questions?

Xin He

State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences 

(ICT, CAS)
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