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Emerging Error-Resilient Applications

Multi-Media

Image Processing Data 
Mining

Robotics

• Noisy input
• Stochastic Processing
• “Acceptable” instead 

of precise output
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V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, “Analysis and characterization of inherent application 
resilience for approximate computing,” DAC 2013.

Applications 
have a mix of 
resilient and 
sensitive
computations

83% of runtime 
spent in  
computations 
can be 
approximated 

Emerging Error-Resilient Applications
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What is Approximate Computing?

 Approximate computing
● A technique to tradeoff computation quality and computational effort 

(e.g., energy)
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Approximate Computing
Key idea: Trade off computation quality and energy consumption 
(Unreliable hardware units may produce incorrect results with 
much lower power.)

 Voltage Over-Scaling
● Circuits work below the nominal voltage for energy reduction

• Error vs. Energy

 Resilience-Aware Scheduling
● Not well explored
● ApproxMap

• J. Yi et al. “Approxmap: On task allocation and scheduling for resilient applications,” 
ASPDAC, pp. 1–6, IEEE, 2016.

Approximate circuit
design

Approximate 
architecture &system
design

Approximate 
computing in software
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ApproxMap: Resilience-Aware Scheduling 
on Multicore Platforms

How to treat error-resilient tasks and 
error-sensitive tasks differently for 
energy gains

How to ensure the target quality 
requirement, and to meet the 
application performance requirement??
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Mapping and scheduling

Resilient applications

Note: Here we assume the processor cores are architecturally identical and the 
only source of heterogeneity is their operating voltage levels. 8



Data flow graph G=<V, E, R>

Architecture & Application Model
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resilient 
task

Operating voltage V = {V1, V2, ⋯ ,VK}, where V1 < V2 < ⋯ < VK. 

VK is the nominal voltage, while the other voltage level could potentially 
impact the correctness of the computation.
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ApproxMap

1

2

3
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ApproxMap: Offline Schedule

Quality Check

V1 V2 V4

Worst case 
execution time

Slack window: resilient task complete before the worst case execution time 



ApproxMap: Online Adjustment

S1
ILP: {V1,V2,V4};

Update its voltage set 
and execute 
immediately
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ApproxMap: Unsolved Issue I

Runtime Quality Satisfaction Issue

Quality checker is unreliable! 
(it is usually trained by a learning model and 
predict quality violation with 𝑝𝑝𝑝 accuracy.) 14



Quality Satisfaction

Runtime Quality Satisfaction Issue
●Quality satisfaction 

𝐸𝐸 < 𝑇𝑇𝑇𝑇

● Probability of quality satisfaction
max 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. (𝐸𝐸 < 𝑇𝑇𝑇𝑇)
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 Detailed task-core adjustment & voltage set adjustment
● single-core adjustment may cause the online time slack unusable.

ApproxMap: Unsolved Issue II

𝑡𝑡7 cannot utilize 
any slack at 
runtime, because it 
has to wait for 𝑡𝑡6, 
which cannot 
finish earlier on 
M2. 

However, if assign 
task 𝑡𝑡6 on M1 
instead of M2, this 
problem can be 
solved.
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The Proposed Methodology
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 Selectively trust each intermediate checking result based on a 
probability procedure and the runtime situation to maximize the 
probability of quality satisfaction;

 Characterize voltage tuning table for each resilient task under 
different voltage levels by jointly considering computation quality 
and energy consumption;

 Enable multi-core resilient task adjustment.



Probability of Quality Satisfaction
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 Assume
● The probability of a quality checker can give a correct evaluation is p
● The probability of we believing such a evaluation is q

 Problem
● Find such a value/distribution of q that satisfies

max 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. (𝐸𝐸 < 𝑇𝑇𝑇𝑇)



State Transfer
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 Given the initial schedule in design time, we say the system is in 
different states if it is running different tasks.



State Transfer

 Probability of state transfer
● i.e., the probability of finishing current resilient task t

𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑃𝑃 𝑒𝑒 ≤ 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +
𝑃𝑃 𝑒𝑒 ≤ 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
𝑃𝑃 𝑒𝑒 > 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +
𝑃𝑃 𝑒𝑒 > 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

 Problem 
max 𝑃𝑃 𝐸𝐸 < 𝑇𝑇𝑇𝑇 w. r. t. p, q, th

● Then we can guarantee the computation quality with maximum 
probability by selectively believing the checking results based on q and 
runtime situation.
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Online Execution
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Online scheduler

 Update voltage scaling set for task 𝑡𝑡𝑖𝑖 in PEST (potential energy 
saving tasks):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠i − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡current
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

total_time
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Online scheduler

 Update voltage scaling set for task 𝑡𝑡𝑖𝑖 in PEST (potential 
energy saving tasks):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠i − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡current
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

 updateS(task, available_time)
● Heuristic

• Sorting the voltage levels by 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

• Update 𝑆𝑆𝑖𝑖 by selecting voltages according to total
available_time

V1 Time
1

V2 Time
2

⋮ ⋮
Vk Time

k
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Experimental Setup

 Initial schedule from ApproxMap
● Gurobi 5.60 with CVX 2.1 in Matlab

 Representative task graphs
● TGFF 3.5

 Voltage scalable system with 4 processors, and each processor has 
four operation voltages (1.69 V, 1.46 V, 1.38 V, 1.32 V)

 Variation of datasets
● Take the mean value over 1000 runs for the same task graph
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 For a given quality requirement, increasing the portion of resilient 
tasks can bring benefits on energy savings.

 For each case, lowering quality requirement benefits to energy 
efficiency. 

Comparison with Baseline

27



 Probability of Quality Satisfaction (10% quality threshold)
● Collect the “pass/fail” data over 1000 runs for each application with 

different resilient portions.

28

Comparison with ApproxMap



 Efficacy of Online Adjustment
● As we use the same offline scheduler of ApproxMap, the evaluation of 

our online procedure is presented by comparing energy consumptions 
with ApproxMap.

● In terms of normalized 
energy consumption,
wherein we set ApproxMap
as 1 and error threshold
as 10% .

29

Comparison with ApproxMap



Thank You for Your Attention!
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