
On Resilient Task Allocation and
Scheduling with

Uncertain Quality Checkers

Qian Zhang, Ting Wang and Qiang Xu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

1

Outline

 Background
 Preliminaries
 The proposed methodology

● Probability of quality satisfaction
● Online scheduler

 Experiments

2

Emerging Error-Resilient Applications

Multi-Media

Image Processing Data
Mining

Robotics

• Noisy input
• Stochastic Processing
• “Acceptable” instead

of precise output

3

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, “Analysis and characterization of inherent application
resilience for approximate computing,” DAC 2013.

Applications
have a mix of
resilient and
sensitive
computations

83% of runtime
spent in
computations
can be
approximated

Emerging Error-Resilient Applications

4

What is Approximate Computing?

 Approximate computing
● A technique to tradeoff computation quality and computational effort

(e.g., energy)

5

Accuracy

Time/Resources/Cost

0%

100%

Highly Accurate,
Expensive

Less accurate,
Inexpensive

Approximate Computing
Key idea: Trade off computation quality and energy consumption
(Unreliable hardware units may produce incorrect results with
much lower power.)

 Voltage Over-Scaling
● Circuits work below the nominal voltage for energy reduction

• Error vs. Energy

 Resilience-Aware Scheduling
● Not well explored
● ApproxMap

• J. Yi et al. “Approxmap: On task allocation and scheduling for resilient applications,”
ASPDAC, pp. 1–6, IEEE, 2016.

Approximate circuit
design

Approximate
architecture &system
design

Approximate
computing in software

6

Outline

 Background
 Preliminaries

● ApproxMap: Resilience-aware scheduling

 The proposed methodology
● Probability of quality satisfaction
● Online scheduler

 Experiments

7

ApproxMap: Resilience-Aware Scheduling
on Multicore Platforms

How to treat error-resilient tasks and
error-sensitive tasks differently for
energy gains

How to ensure the target quality
requirement, and to meet the
application performance requirement??

sw

sw

sw

sw

M1 M1

M1 M1

sw

sw

sw

sw

M1 M1

M1 M1

sw

sw

sw

sw

M1 M1

M1 M1

sw

sw

sw

sw

M1 M1

M1 M1

Mapping and scheduling

Resilient applications

Note: Here we assume the processor cores are architecturally identical and the
only source of heterogeneity is their operating voltage levels. 8

Data flow graph G=<V, E, R>

Architecture & Application Model
sw

sw

sw

sw

M1 M1

M1 M1

sw

sw

sw

sw

M1 M1

M1 M1

sw

sw

sw

sw

M1 M1

M1 M1

sw

sw

sw

sw

M1 M1

M1 M1

τ1

τ4 τ2

τ3

sensitive
task

dependencyDeadline L

resilient
task

Operating voltage V = {V1, V2, ⋯ ,VK}, where V1 < V2 < ⋯ < VK.

VK is the nominal voltage, while the other voltage level could potentially
impact the correctness of the computation.

9

ApproxMap

1

2

3

11

12

ApproxMap: Offline Schedule

Quality Check

V1 V2 V4

Worst case
execution time

Slack window: resilient task complete before the worst case execution time

ApproxMap: Online Adjustment

S1
ILP: {V1,V2,V4};

Update its voltage set
and execute
immediately

13

ApproxMap: Unsolved Issue I

Runtime Quality Satisfaction Issue

Quality checker is unreliable!
(it is usually trained by a learning model and
predict quality violation with 𝑝𝑝𝑝 accuracy.) 14

Quality Satisfaction

Runtime Quality Satisfaction Issue
●Quality satisfaction

𝐸𝐸 < 𝑇𝑇𝑇𝑇

● Probability of quality satisfaction
max 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. (𝐸𝐸 < 𝑇𝑇𝑇𝑇)

15

 Detailed task-core adjustment & voltage set adjustment
● single-core adjustment may cause the online time slack unusable.

ApproxMap: Unsolved Issue II

𝑡𝑡7 cannot utilize
any slack at
runtime, because it
has to wait for 𝑡𝑡6,
which cannot
finish earlier on
M2.

However, if assign
task 𝑡𝑡6 on M1
instead of M2, this
problem can be
solved.

16

Outline

 Background
 Preliminaries
 The proposed methodology

● Probability of quality satisfaction
● Online adjustment

 Experiments

17

The Proposed Methodology

18

 Selectively trust each intermediate checking result based on a
probability procedure and the runtime situation to maximize the
probability of quality satisfaction;

 Characterize voltage tuning table for each resilient task under
different voltage levels by jointly considering computation quality
and energy consumption;

 Enable multi-core resilient task adjustment.

Probability of Quality Satisfaction

19

 Assume
● The probability of a quality checker can give a correct evaluation is p
● The probability of we believing such a evaluation is q

 Problem
● Find such a value/distribution of q that satisfies

max 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. (𝐸𝐸 < 𝑇𝑇𝑇𝑇)

State Transfer

20

 Given the initial schedule in design time, we say the system is in
different states if it is running different tasks.

State Transfer

 Probability of state transfer
● i.e., the probability of finishing current resilient task t

𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑃𝑃 𝑒𝑒 ≤ 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +
𝑃𝑃 𝑒𝑒 ≤ 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
𝑃𝑃 𝑒𝑒 > 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +
𝑃𝑃 𝑒𝑒 > 𝑡𝑡𝑡 𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

 Problem
max 𝑃𝑃 𝐸𝐸 < 𝑇𝑇𝑇𝑇 w. r. t. p, q, th

● Then we can guarantee the computation quality with maximum
probability by selectively believing the checking results based on q and
runtime situation.

21

Online Execution

22

Online scheduler

 Update voltage scaling set for task 𝑡𝑡𝑖𝑖 in PEST (potential energy
saving tasks):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠i − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡current
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

total_time

23

Online scheduler

 Update voltage scaling set for task 𝑡𝑡𝑖𝑖 in PEST (potential
energy saving tasks):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠i − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡current
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

 updateS(task, available_time)
● Heuristic

• Sorting the voltage levels by 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

• Update 𝑆𝑆𝑖𝑖 by selecting voltages according to total
available_time

V1 Time
1

V2 Time
2

⋮ ⋮
Vk Time

k

24

Outline

 Background
 Preliminaries and problem definition
 The proposed methodology

● Probability of quality satisfaction
● Online scheduler

 Experiments

25

Experimental Setup

 Initial schedule from ApproxMap
● Gurobi 5.60 with CVX 2.1 in Matlab

 Representative task graphs
● TGFF 3.5

 Voltage scalable system with 4 processors, and each processor has
four operation voltages (1.69 V, 1.46 V, 1.38 V, 1.32 V)

 Variation of datasets
● Take the mean value over 1000 runs for the same task graph

26

 For a given quality requirement, increasing the portion of resilient
tasks can bring benefits on energy savings.

 For each case, lowering quality requirement benefits to energy
efficiency.

Comparison with Baseline

27

 Probability of Quality Satisfaction (10% quality threshold)
● Collect the “pass/fail” data over 1000 runs for each application with

different resilient portions.

28

Comparison with ApproxMap

 Efficacy of Online Adjustment
● As we use the same offline scheduler of ApproxMap, the evaluation of

our online procedure is presented by comparing energy consumptions
with ApproxMap.

● In terms of normalized
energy consumption,
wherein we set ApproxMap
as 1 and error threshold
as 10% .

29

Comparison with ApproxMap

Thank You for Your Attention!

30

	On Resilient Task Allocation and Scheduling with �Uncertain Quality Checkers
	Outline
	Emerging Error-Resilient Applications
	Emerging Error-Resilient Applications
	What is Approximate Computing?
	Approximate Computing
	Outline
	ApproxMap: Resilience-Aware Scheduling �on Multicore Platforms
	Architecture & Application Model
	ApproxMap
	ApproxMap: Offline Schedule
	ApproxMap: Online Adjustment
	ApproxMap: Unsolved Issue I
	Quality Satisfaction
	ApproxMap: Unsolved Issue II
	Outline
	The Proposed Methodology
	Probability of Quality Satisfaction
	State Transfer
	State Transfer
	Online Execution
	Online scheduler
	Online scheduler
	Outline
	Experimental Setup
	Comparison with Baseline
	スライド番号 28
	スライド番号 29
	Thank You for Your Attention!

