Processor Shield for L1 Data Cache
Software-Based On-line Self-testing

Authors: Ching-Wen Lin and Chung-Ho Chen

Inst. of Computer & Communication Engineering,
Department of Electrical Engineering,
National Cheng Kung University, Taiwan
Outline

- Introduction
- Challenge for on-line cache SBST
- Processor shield design
- Guardband calibration
- Case study: ARMv5 processor
- Conclusion
System Reliability

- Operational fault
 - On-line testing
 - Hardware built-in self-test (BIST)
 - Software-based self-test (SBST)

- Aging effect (NBTI)
 - Guardbanding
 - One-time worst-case guardband
 - Dynamically calibrated guardband
Purpose:
Data Cache On-Line SBST

- OS-managed platform
 - Virtual memory system
- RAM and control logic on-line SBST
- Dynamic voltage frequency scaling system (DVFS)
 - Minimal required guardband calibration
Outline

- Introduction
- Challenge for on-line cache SBST
- Processor shield design
- Guardband calibration
- Case study: ARMv5 processor
- Conclusion
Challenges

- System memory mapping
 - Virtual address translation
 - Physical memory layout
- Alteration to current system
 - Required memory region
- Faulty effect isolation
 - Iterative SBST
 - DVFS system cooperation
March Algorithm

- Special addressing order
 - Ascending (from index 0 to index MAX)
 - Descending (from index MAX to index 0)
 - Either

- Data background

- Cache RAM cell test
 - Tag / Data RAM module

\[\uparrow(wDB); \uparrow(rDB, wCDB); \uparrow(rCDB, wDB); \downarrow(rDB, wCDB); \downarrow(rCDB, wDB); \uparrow(rDB) \]
System Memory Mapping

- Virtual address translation
 - Access right
- Physical memory layout
 - Main memory
 - Memory-mapped I/O
 - Unused space
- Cache architecture
 - Virtual/physical index
 - Virtual/physical tag
Misalignment Problem

- **Cause**
 - Starting March sequence from a non-zero cache index
 - Cache size > page size

- **OS-managed vs. Non-OS**
Shielded Address

- Required for testing (high coverage)
 - March data background for tag RAM testing
 - Address for control logic testing
- Limited by system
 - Memory protection scheme
 - Physical memory layout
- Shielded page
System Protection

Before SBST

- Protect all shielded addresses
- Minimize the alteration of system state

During SBST

- Detect and block all faulty effects
- Prevent system from entering an unrecoverable status
Outline

- Introduction
- Challenge for on-line cache SBST
- Processor shield design
- Guardband calibration
- Case study: ARMv5 processor
- Conclusion
Processor Shield

- System level approach
 - Software framework
 - Hardware design for test (DFT)

- System protection
 - Current system states
 - Other processes
 - On-bus devices

- Shielded address redirection

- Faulty access block
Software Framework

- System call implementation
- Testing environment initialization
 - Request free memory pages from OS
 - Prepare manual page table for testing
 - Back up process context
- Cache SBST body function
 - RAM modules
 - Control logic
- Process context recovery
System Call Execution Flow
Manual Page Table

- Get memory access right
- Resolve misalignment problem

OS dispatched page table

<table>
<thead>
<tr>
<th>Code Segment</th>
<th>VN_c_m</th>
<th>PN_c_m</th>
<th>c</th>
<th>...</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control-dependent data Segment</td>
<td>VN_cd_1</td>
<td>PN_cd_1</td>
<td>c</td>
<td>...</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>VN_cd_n</td>
<td>PN_cd_n</td>
<td>c</td>
<td>...</td>
<td>U</td>
</tr>
<tr>
<td>March test data Segment</td>
<td>VN_Md_1</td>
<td>PN_Md_1</td>
<td>c</td>
<td>...</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>VN_Md_x</td>
<td>PN_Md_x</td>
<td>c</td>
<td>...</td>
<td>U</td>
</tr>
<tr>
<td>Aliased DB page</td>
<td>V_Aliased_DB</td>
<td>P_Aliased_DB</td>
<td>c</td>
<td>...</td>
<td>U</td>
</tr>
<tr>
<td>Aliased CDB page</td>
<td>V_Aliased_CDB</td>
<td>P_Aliased_CDB</td>
<td>c</td>
<td>...</td>
<td>U</td>
</tr>
</tbody>
</table>

Manual page table

<table>
<thead>
<tr>
<th>Code Segment</th>
<th>VN_c_1</th>
<th>PN_c_1</th>
<th>N</th>
<th>C</th>
<th>Cache policy</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control-dependent data Segment</td>
<td>VN_cd_1</td>
<td>PN_cd_1</td>
<td>N</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VN_cd_n</td>
<td>PN_cd_n</td>
<td>N</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March test data Segment</td>
<td>VN_Md_1</td>
<td>PN_Md_1</td>
<td>N</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VN_Md_x</td>
<td>PN_Md_x</td>
<td>N</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliased DB page</td>
<td>V_Aliased_DB</td>
<td>P_Aliased_DB</td>
<td>N</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliased CDB page</td>
<td>V_Aliased_CDB</td>
<td>P_Aliased_CDB</td>
<td>N</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This descriptor is directly copied from the corresponding page in the OS dispatched page table.
Physical Tag RAM Testing

- Write-back and write-allocate cache
 - March write
 - Write a special datum to target cache line
 - March read
 - Clean the target cache line
 - Read the same address in the next level memory without accessing cache
- Shielded address redirection
 - Aliased DB/CDB page
 - DFT hardware
DFT Hardware Design

- System bus wrapper
 - Redirect shielded page to aliased DB/CDB page
 - Block faulty access
- Coprocessor design / bus slave design
Outline

- Introduction
- Challenge for on-line cache SBST
- Processor shield design
- Guardband calibration
- Case study: ARMv5 processor
- Conclusion
Iterative Cache SBST Flow

- Obtain the workable lowest voltage for a specified frequency
- Cooperate with DVFS system
- Calibrate the required guardband for RAM module and control logic

![Flowchart](chart.png)
Outline

- Introduction
- Challenge for on-line cache SBST
- Processor shield design
- Guardband calibration
- Case study: ARMv5 processor
- Conclusion
Experimental Environment

- ARMv5-compatible processor
 - 16KB direct-mapped data cache
 - Virtual tag/virtual index
 (a physical tag associated with each line)
 - Linux Kernel 2.6.33

- Cache control functions
 - Enable/disable, clear, write-back, write-through, write-allocate, write-around
Simulation and Result

- Control logic stuck-at fault coverage
 - Syntest Turboscan
 - 98.99% of stuck-at fault

- RAM module fault coverage
 - RAMSES simulator
 - March C- algorithm
 - 100% (virtual TAG, physical TAG and data)
Results (2)

- **Hardware overhead**
 - TSMC 40nm technology library, 1GHz
 - Additional latency: 0.06ns

<table>
<thead>
<tr>
<th>Target</th>
<th>Code size (KB)</th>
<th>Memory usage (KB)</th>
<th>Execution time (CPU cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data RAM</td>
<td>0.69</td>
<td>0.99</td>
<td>32 KB March test pages</td>
</tr>
<tr>
<td>Tag RAM</td>
<td>2.77</td>
<td>3.21</td>
<td>132,543</td>
</tr>
<tr>
<td>Phy. Tag RAM</td>
<td>5.24</td>
<td>6.17</td>
<td>8 KB Aliased Pages</td>
</tr>
<tr>
<td>Logic device</td>
<td>24.11</td>
<td>25.13</td>
<td>631,521</td>
</tr>
<tr>
<td>Total</td>
<td>32.81</td>
<td>75.5</td>
<td>1,248,737</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Challenge for on-line cache SBST
- Processor shield design
- Guardband calibration
- Case study: ARMv5 processor
- Conclusion
Conclusion

- On-line cache SBST issues
 - System memory mapping
 - Alteration to current system
 - Faulty effect isolation

- Processor shield design
 - Seamless process switch between SBST and OS kernel

- Required guardband calibration
 - Cooperation with DFVS system
Q&A