

#### Regularity-aware Routability-driven Placement Prototyping Algorithm for Hierarchical Mixed-size Circuits

Jai-Ming Lin, Bo-Heng Yu, Li-Yen Chang

Speaker: Li-Yen Chang From: NCKU SEDA LAB Date: 2017/01





#### Outline

Introduction

#### Iterarchy Aware Clustering Algorithm for Mixed-Size Cells

- Cost function for clustering large objects
- Constraint for clustering two objects
- Overview of Our Methodology
  - Placement flow
  - Pre-coarsening
  - Post-processing
- Experimental Result
- Conclusion



- Placement is a critical stage in today' s physical synthesis flow with tremendous impact on final performance of VLSI design
- Macro placement stills is the most time consuming step in the industry
  - Engineers still have to spend a lot of time to get feasible results of macros even though commercial tools already can obtain acceptable results for standard cells
- Consideration of macros placement includes
  - Pre-placed macros
  - Routability
  - Powerplanning



Three Stage Míxed-síze Placement

- The three stage mixed-size placement algorithm is most suitable for commercial design flows since it divides placement into three steps:
  - Placement prototyping: distributes standard cells and macros over a placement regions while optimizing wirelength and routability
  - Macro placement: determine locations of macros
  - Standard cell placement: determine locations of standard cells
- Focus on placement prototyping with considering macro regularity





#### Placement Prototyping with Macro Regularity

- Placement prototyping is the most important step because
  - Its result determines the distribution of macros
  - The locations of macros directly influence standard cell placement
- Macro regularity is an important issue but is ignored by previous works
  - Regular macros: macros which are in the same types and have strong connections
- Place macro regularity can simplify powerplanning and improve routability





#### Contribution in Placement Prototyping

- Consider the regularity placement of macros
- Propose a three step clustering method which includes macro clustering, standard cell clustering, and mixed-cell clustering
  - The traditional approach only clusters standard cells



(a) Classic clustering result

(b) Desirable result

- Consider nets of two objects which connect to pre-placed macros during clustering the two objects
  - We do not cluster two objects even thought they have strong connections if associated nets connect to fixed-pins which have longer distance



- Let m(o<sub>i</sub>, o<sub>j</sub>) represent that two objects o<sub>i</sub> and o<sub>j</sub> are going to be merged
- A new cluster score function s(o<sub>i</sub>, o<sub>j</sub>) for m(o<sub>i</sub>, o<sub>j</sub>) when o<sub>i</sub> and o<sub>j</sub> have larger sizes

$$s(o_i, o_j) = \rho(o_i, o_j) \times [\alpha \times \sum_e w_e + \beta \times \Gamma(o_i, o_j)]$$

- $w_e$  denotes the weight of a hyper-edge e
  - $W_e = 1 / (d(e)-1)$ , d(e) denotes degree of a net
- Γ(o<sub>i</sub>, o<sub>j</sub>): the affinity of o<sub>i</sub> and o<sub>j</sub> which denotes the logical relation between the two objects
  - Γ(o<sub>i</sub>, o<sub>j</sub>) = ε × ω<sub>i j</sub>, where ω<sub>i,j</sub> is the number of common parts of name between the o<sub>i</sub> and o<sub>j</sub> and ε is user-defined parameter
- ρ(o<sub>i</sub>, o<sub>j</sub>) is a penalty function about combined area which adjusts their clustering score

# Flexible Area Control Technique

Use a penalty function to decline the impact of large combine area  $-(A_i + A_i)$ 

Penalty: 
$$\rho = e^{\frac{(l-j)}{A_{avg}*\mu}}$$

- $A_i(A_j)$  denotes area of  $o_i(o_j)$
- *A<sub>avg</sub>* denotes average area in each cluster in current iteration



### Bounding Box Constraint (B.B.C) for Clustering Objects

- Use a bounding box constraint to improve wirelength
  - A net which connects to fixed pins is called a bounding net
  - An related net for m(o<sub>i</sub>, o<sub>j</sub>) which has fixed pins is called a related bounding net
  - An unrelated net for m(o<sub>i</sub>, o<sub>j</sub>) which has fixed pins is called a unrelated bounding net
  - Two objects o<sub>i</sub> and o<sub>j</sub> cannot be merged if half parameter of unrelated bounding net bounding box nets is large than L/λ
    - *L*:chip outline
    - λ: user-specified value



Terminals making a bounding box



#### Placement Prototyping Flow





#### Placement Prototyping Flow





#### Placement Prototyping Flow





Pre-coarseníng

- Pre-coarsening is to enhance the speed of global distribution
  - Step 1: Cluster macros to generate macro groups (MGs) for considering regular macros
    - Apply best choice
    - Use our score function with B.B.C
  - Step 2: Merged standard cell to form standard cell groups (SGs) before clustering standard cells with MGs
    - Apply first choice
    - Use traditional score function with B.B.C
  - Step 3: MGs and SGs are clustered to generate mixed-cell groups (XGs)
    - Apply first choice
    - Use our score function with B.B.C





Expansion Macro

- Reserve spacing around macros to improve routability of macros
- e(i) determins the spacing in the *i*-th side of a macro, where i = {left, right, bottom, top}

 $e(i) = \gamma \times \left(N_p^i \times \left(w_{avg} + s_{avg}\right) + s_{avg} + s_{DRC}\right)$ 

•  $N_p^i$  denotes number of pins in the *i*-th side of the macro







#### Macro Clustering

- Apply Best Choice combined with our score function to handle macro clustering
  - Best Choice can provide a high quality clustering solution, but waste time.
    - Since number of macros is significantly less than that of standard cells, its runtime is still acceptable.
  - Our score function is able to cluster two macros with large combined area when they have strong connectives and similar design hierarchies.





## Decomposition of Macro Group

- Decompose a macro cluster into subclusters according to their types if the cluster has different type macros
  - The actual area of macros in a cluster cannot be calculated correctly which is required during global placement
- Add a pseudo net to connect subclusters if a macro cluster is







## Dívísíon of Macro Array

- Determine whether a macro array should be divided according the following conditions:
  - The number of macros in an array is larger than a user-specified value λ<sub>1</sub>
  - The number of pre-placed macros around an array is larger than a user-specified value  $\lambda_2$







#### Reservation of Spacing between Macros

- Given a macro array whose dimension is *m* × *n*, we will keep *n* + 1 (*m* + 1) vertical (horizontal) channels, where *m*(*n*) is number of rows (columns)
- The width w<sub>h</sub> of a vertical channel is computed by the following equation:



$$w_{h} = \{\frac{m \times n \times (N_{p}^{top} + N_{p}^{bottom})}{n+1} \times (w_{avg} + s_{avg}) + s_{avg}\} + \delta \times C$$

- N<sup>top</sup><sub>p</sub> and N<sup>bottom</sup><sub>p</sub> respectively denote number of pins in the top and bottom sides of a macro in the cluster
- w<sub>avg</sub> (s<sub>avg</sub>) denotes the average metal width (spacing) in all layers
- C denote the congestion of the bin of the array where it belongs to and the value is calculated by FLUTE



#### Reservation of Spacing between Macros





#### Experimental Environment

- C/C++ language
- IBM x3250 M2, Linux server with Intel Xeon 2.27GHz
- 90GB Memory
- Four industrial benchmark
- Routed wirelength and overflow are evaluated by IC Compiler

| Circuit   | # Movable<br>macros | # Pre-placed<br>macros | # IO pads | # Standard<br>cells | # Nets |
|-----------|---------------------|------------------------|-----------|---------------------|--------|
| Circuit 1 | 30                  | 13                     | 130       | 157K                | 181K   |
| Circuit 2 | 55                  | 15                     | 219       | 232K                | 235K   |
| Circuit 3 | 71                  | 47                     | 365       | 1098K               | 1126K  |
| Circuit 4 | 38                  | 15                     | 169       | 321K                | 327К   |



#### Experimental Result

- Our experiment can be divided into two parts
  - Demonstrate the impact of the macro regularity
  - Show the effect of bounding box constraint

| Circuit    | w/o Regularity Constraint |                            |                     |                            | w/ Regularity Constraint |             |                            |                    |             |                            |       |
|------------|---------------------------|----------------------------|---------------------|----------------------------|--------------------------|-------------|----------------------------|--------------------|-------------|----------------------------|-------|
|            | Tool                      |                            | w/o Our Methodology |                            | w/o B.B. Constraint      |             |                            | w/ B.B. Constraint |             |                            |       |
|            | # of<br>O.F               | WL<br>(10 <sup>7</sup> μm) | # of<br>O.F         | WL<br>(10 <sup>7</sup> μm) | T (s)                    | # of<br>O.F | WL<br>(10 <sup>7</sup> μm) | T (s)              | # of<br>O.F | WL<br>(10 <sup>7</sup> μm) | ⊤ (s) |
| Circuit 1  | 636                       | 1.31                       | 31                  | 1.15                       | 1243                     | 31          | 1.18                       | 1260               | 31          | 1.06                       | 1260  |
| Circuit 2  | 1086                      | 1.40                       | 775                 | 1.31                       | 22.7                     | 727         | 1.27                       | 24.2               | 746         | 1.24                       | 24.2  |
| Circuit 3  | 9755                      | 7.41                       | 293                 | 6.56                       | 120                      | 264         | 6.77                       | 123                | 267         | 6.32                       | 133   |
| Circuit 4  | 1071                      | 1.84                       | 3225                | 1.74                       | 62.7                     | 1090        | 1.73                       | 61.3               | 293         | 1.70                       | 65.5  |
| Normalized | 9.39                      | 1.15                       | 3.23                | 1.04                       | 0.97                     | 1.58        | 1.06                       | 0.98               | 1           | 1                          | 1     |

\*w/o our methodology just cluster the standard cell by first choice



Experimental Result

#### Circuit 4 : Final layouts of macro placement





#### Global Congestion Map



(c) Our w/o B.B.C with 1090 overflow



(b) w/o Our Methodology with 3225 overflow





### Conclusion

- Propose a routability-driven placement prototyping methodology which considers macro regularity in order to facilitate powerplanning
  - Use a three step coarsening methodology to cluster mixed-size cells
  - Propose a new clustering score function to facilitate cluster mixed-size cells
  - Propose a bounding box constraint to avoid cluster improper objects which may increase wirelength
- The experimental results show that the proposed algorithm can further improve the routing overflow and routing wirelength