An Effective Legalization Algorithm for Mixed-Cell-Height Standard Cells

C.-H. Wang, Y.-Y. Wu, J.-L. Chen, Y.-W. Chang S.-Y. Kuo, W.-X. Zhu, G.-H. Fan

Jan. 18, 2017

Dependable Distributed Systems and Networks Laboratory Graduate Institute of Electrical

National Taiwan University

Outline

Introduction

Previous Works

Proposed Method

Experimental Results

Conclusions

Multiple-Row-Height Cells

- Multiple-row-height cells [Beak et al., SPIE'08]
- Minimize cell area
- Minimize intra-cell routing space

Cell area : 54 grids
Cell area : 48 grids
VSS

Single-row-height \& double-row-height cells with an identical function

Modern Placement Flow

Legalization

- Given
- A global placement result with cell location ($x_{i}^{\prime}, y_{i}^{\prime}$)
- Objective
- Minimize

$$
\sum_{i=1}^{n}\left(\left|x_{i}-x_{i}^{\prime}\right|+\left|y_{i}-y_{i}^{\prime}\right|\right)
$$

- No cell overlaps \& cells are in the chip
- Cells are aligned in rows

Power-rail Alignment

- Power-rail alignment issues
- An odd-row-height cell alignment can be achieved by vertical cell flipping
- Two types of even-row-height cells: VDD or VSS runs along its top and bottom boundaries

Outline

Introduction

Previous Works

Proposed Method

Experimental Results

Conclusions

Window-based Legalization

- Cells partially inside the window are non-local cells
- Rows are divided by non-local cells into continuous segments
- Find insertion intervals to insert a triple-rowheight cell [Chow et al., DAC'16]

Single-Row-Height Cells Legalization

- Not much work on legalization with multiple-rowheight standard cells is reported in the literature; however, single-row-height standard cells legalization has been studied for a long time
- Tetris Legalization [Hill, Patent 2002]
- Abacus Legalization [Spindler et al., ISPD'08]

Modern Legalizers: Tetris vs. Abacus

Global placement

Tetris

Greedy heuristic
\Rightarrow Larger displacement

Small displacement
Abacus w/o violation

Dynamic programming
\Rightarrow Smaller displacement

Abacus Legalization

- Legalize a cell at a time from left to right in a row
- Minimize quadratic displacement (QD)

Displacement weight for module $i \quad$ Abutment constraint in one row

Abacus Legalization

- Legalize a cell at a time from left to right in a row

$\mathrm{QD}: \min \left(x_{1}-x_{1}^{\prime}\right)^{2}+\left(x_{2}-x_{2}^{\prime}\right)^{2} \| \underset{6}{6}$ QD: $\min 2\left(x_{1}-\frac{x_{1}^{\prime}+\left(x_{2}^{\prime}-w_{1}\right)}{2}\right)^{2}$

Unknown legal x-pos

Inequality to equality

$$
\Rightarrow x_{1}=\frac{3+(6-5)}{2}=2, x_{2}=7
$$

Abacus Extension

- Single-row Abacus ignores other rows

- If we consider the maximal cell height as a new row, we extend the dynamic programming method directly. It causes large number of dead space

Insufficiency of Previous Works

- Window-based legalization insufficiency
- Decide the order of cells arbitrarily
- Find consecutive vacant rows difficultly
- Incur large displacement when moving to other window
- Abacus insufficiency
- Inhibit legalization in one row when cells legalized in another row
- Incur vertical overlap chain

Previous Works Comparisons

Contributions

- Propose a multiple-row-height cells legalization based on Abacus
- Remedy Abacus' insufficiencies \& extend its advantages
- Introduce a dead-space-aware cost function for multiple-row-height cells legalization
- Achieve a smaller displacement compared to a leading academic legalizer
- About 50\% smaller \triangle HPWL than the state-of-the-art work

Outline

Introduction

Previous Works

s

Proposed Method

Experimental Results

Conclusions

Problem Formulation

- Given
- A global placement result with multiple-row-height cells in location ($x_{i}^{\prime}, y_{i}^{\prime}$)
- Objective
- Minimize $\sum_{i=1}^{n}\left(\left|x_{i}-x_{i}^{\prime}\right|+\left|y_{i}-y_{i}^{\prime}\right|\right)+D \times \alpha$ $\left(x_{i}, y_{i}\right)$: legal location of cell i D : total dead space
α : user-defined parameter
- No cell overlaps \& cells are in the chip
- Cells are aligned in rows
- Cells orient to power rails with VDD/VSS constraints

Multi-Height Cells Legalization

Cell and Row Selection

 ckelbisstyoung to be legalized

- Friycetherychosestincerinolf doereespareding cost

PlaceRow Method

- Solve QD by dynamic programming approach:
- solve sub problems optimally to obtain the final solution

Cell 2 overlaps with previous cell

Cluster cell 1 and cell 2 and move the cluster to new global x-pos

Minimum Cost Selection

- Legalize the overlap cells, and get the cost
- Select the minimum cost row

	Order	
	6	Cost : 11
	4	Cost: 7
	2	Cost: 3
	The closest row 1	Cost : 1 Minimum
	3	Cost: 5.2
O	5	Cost: 9
	7	Cost : 13

Execution Time Reduction

- Speed up this process by only placing cells into their neighboring rows

Dead Space Consideration

- Add the area of dead space into the cost function

$$
-\min \sum_{i=1}^{n}\left(\left|x_{i}-x_{i}^{\prime}\right|+\left|y_{i}-y_{i}^{\prime}\right|\right)+\alpha \times D
$$

α is user-defined parameter
D is total dead space

Original cost function

Dead space-aware cost function

Multiple Overlaps Solution

- Choose the row with maximum overlapping area when overlapping with previous cells in different rows
- Do Multi-PlaceRow on that row

Cell 5 overlaps with cell 3 and cell 2

Cell 5 clusters with cell 3

Clustered cells then cluster with cell 2

Multi-PlaceRow Analysis

- If every multiple-row-height cell is never clustered and only the horizontal movement is considered, the solution generated by MultiPlaceRow is optimal

Outline

Introduction

Previous Works

s

Proposed Method

Experimental Results

Conclusions

Experimental Settings

- Platform
- C++ programming language
- 64-bit Linux machine
- Intel Xeon 2.93 GHz CPU with 48GB memory
- Comparison
- Comparison with Chow et al., DAC'16
- Benchmarks
- Same designs adapted by Chow et al.

Experimental Results

- 52% smaller $\triangle H P W L$ than the ILP method

- 59% smaller $\Delta H P W L$ than the state-of-the-art work

Benchmark	\#S. Cell	\#D. Cell	Density	GP HPWL (m)	Disp. (sites)			$\triangle \mathrm{HPWL}$			Runtime (s)		
					ILP	DAC'16	Ours	ILP	DAC'16	Ours	ILP	DAC'16	Ours
des_perf_1	103842	8802	0.91	1.43	2.13	3.32	3.46	2.61\%	2.85\%	0.96\%	4098.7	7.0	18.0
des_perf_a	99775	8513	0.43	2.57	0.66	0.96	0.68	0.11\%	0.28\%	0.14\%	193.8	2.6	6.1
des_perf_b	103842	8802	0.50	2.13	0.62	0.85	0.64	0.12\%	0.31\%	0.16\%	250.8	2.4	6.2
fft_1	121913	5500	0.46	5.25	0.45	0.47	0.47	0.09\%	0.10\%	0.10\%	206.0	1.9	7.8
fft_2	30297	1984	0.84	0.46	1.58	1.81	1.55	2.25\%	1.66\%	0.93\%	776.8	1.1	1.3
fft_a	30297	1984	0.50	0.46	0.66	0.86	0.64	0.55\%	0.87\%	0.68\%	72.7	0.4	0.8
fft_b	28718	1907	0.25	0.75	0.60	0.64	0.64	0.32\%	0.33\%	0.33\%	38.2	0.3	0.8
matrix_mult_1	28718	1907	0.28	0.95	0.73	0.80	0.62	0.32\%	0.33\%	0.27\%	61.9	0.4	1.0
matrix_mult_2	152427	2898	0.80	2.39	0.49	0.53	0.48	0.36\%	0.28\%	0.22\%	967.4	3.9	9.1
matrix_mult_a	152427	2898	0.79	2.59	0.45	0.49	0.44	0.30\%	0.22\%	0.17\%	825.0	4.0	8.9
matrix_mult_b	146837	2813	0.42	3.77	0.27	0.33	0.27	0.09\%	0.14\%	0.09\%	150.7	1.3	9.3
matrix_mult_c	143695	2740	0.31	3.43	0.25	0.30	0.25	0.09\%	0.13\%	0.09\%	127.8	1.3	8.9
pci_bridge32_a	143695	2740	0.31	3.29	0.27	0.29	0.27	0.11\%	0.11\%	0.11\%	139.0	1.4	9.0
pci_bridge32_b	26268	3249	0.38	0.46	0.88	0.95	0.88	0.52\%	0.58\%	0.63\%	49.4	0.3	0.8
superblue12	25734	3180	0.14	0.98	0.95	0.96	0.52	0.12\%	0.13\%	0.12\%	15.3	0.2	0.7
superblue11_a	861314	64302	0.43	42.94	1.85	1.94	1.86	0.15\%	0.15\%	0.14\%	3073.6	23.4	80.2
superblue12	1172586	114362	0.45	39.23	1.45	1.63	1.63	0.18\%	0.22\%	0.25\%	5079.0	106.5	91.1
superblue14	564769	47474	0.56	27.98	2.56	2.62	2.38	0.22\%	0.22\%	0.16\%	3360.6	17.1	70.3
superblue16_a	625419	55031	0.48	31.35	1.61	1.73	1.68	0.10\%	0.12\%	0.11\%	2470.7	21.7	61.0
superblue19	478109	27988	0.52	20.76	1.52	1.60	1.68	0.14\%	0.14\%	0.11\%	1848.8	10.9	44.6
				Average	1.00	1.16	1.05	0.44\%	0.46\%	0.29\%	1190.3	10.4	21.8
				N. Average	0.95	1.11	1.00	1.52	1.59	1.00	54.6	0.48	1.0

Layout

- The benchmark circuit fft_2

Legalization result

A partial layout of legalization result

Outline

Introduction

Previous Works

s

Proposed Method

Experimental Results

Conclusions

Conclusions

- Develop an effective algorithm for the mixed-cell-height standard cells legalization problem
- Derive a dead-space-aware objective function and an optimization scheme to handle this issue
- Achieve best wirelength among all published methods in reasonable running time as shown in experiment results, e.g., about 50\% smaller wirelength increase than the state-of-the-art work which is a best paper nominee at DAC'16

National Taiwan University

National Taiwan University

Multi-PlaceRow Analysis - Case I

- The to-be-inserted cell 5 keeps its position while there is no overlap

Multi-PlaceRow Analysis - Case II

- The to-be-inserted cell 5 overlaps with previous cell 4 in row 2

Multi-PlaceRow Analysis - Case III-A

- The to-be-inserted cell 5 overlaps with previous cell 4 in row 2 and cell 3 in row 1

Multi-PlaceRow Analysis - Case III-B

- The overlapping area between cell 3 and cell 5 is larger than that between cell 4 and cell 5
- Cluster cell 5, cell 3, and cell 1
- After the moving, cell 5 overlaps cell 4
- Add cell 4 to the previous cluster
- After all cells are non-overlapping, cell 1 exits its cluster to restore to original position

Future Work: Order of Cells Determination

- Determine the legalizing order of cells before legalization, instead of deciding order only by x-coordinate

Determine by x -coordinate

Determine by preprocess

Future Work: Vertical Power Rail Awareness

- Vertical power rails are usually implemented by Metal 2 in process, and some designs also use Metal 2 to implement the power rails of multiple-row-height cells
- We should avoid vertical power rails overlapping with the power rails of multiple-row-height cells

