A Time Domain Behavioral Model for Oscillators Considering Flicker Noise

ASP-DAC 2017

Hui Zhang and Bo Wang
The Key Lab of IMS, School of ECE, Shenzhen Graduate School
Peking University, China

Chiba, Japan, Jan.18, 2017
Outline

- Introduction
- Relationship between jitter and phase noise
 - The link for thermal noise
 - Discuss and derive the link for flicker noise in detail.
- Model Implementation
- Theory and model verification
 - Theory verification
 - Model verification
 - Comparison of the phase noise
 - Comparison of the period jitter’s PSD
- Conclusions
Time Domain Behavioral Model Needed

- Large-signal time domain model is the only suitable model for the circuit without steady-state solution.
 - Fractional-N PLL
 - Bang-bang PLL
 -
- Design space exploration can be done efficiently by the behavioral model.
Phase Noise in Oscillators

- The -20dB/dec and -30dB/dec regions are up-converted by the thermal and flicker noise respectively.
State-of-the-Art

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers

Ken Kundert
Designer’s Guide Consulting, Inc.

Citation: 169 (based on Google Scholar)

- Most cited paper in modeling PLL and the oscillator behaviorally
- Jitter-based time domain and phase domain model
- To be improved: “This excludes flicker noise.”
State-of-the-Art

Event-Driven Simulation and Modeling of Phase Noise of an RF Oscillator
R.B. Staszewski et al., TCAS-I, 2005
Citation: 101

- Second most cited paper in modeling oscillator behaviorally
- Jitter-based time domain model
- To be improved: “A further correction has to be made” when model the 30dB/dec rolling off region of the phase noise.
Both of the two top cited models are jitter-based.

- **Efficient**: noise is represented only on the timing of the transitions (in the form of jitter)
- **Available**: jitter extraction methodology is based on the commercially available simulator such as SpectreRF
Link between Jitter and Phase Noise Considering Only Thermal Noise

- The relationship between the period jitter variance and the phase noise with only the thermal noise is

\[\sigma_{thermal}^2 = L(\Delta f) \frac{\Delta f^2}{f_0^3}. \]

- The jitter extracted from this formula is proved to be accurate in modeling the -20dB/dec of the phase noise.
Extract the Jitter due to Flicker Noise

Hajimiri (JSSC99), McNeil (ISCAS04) et al.:

\[\sigma^2(\tau) = \frac{2}{(\pi f_0)^2} \int_{0}^{+\infty} L_\phi(\Delta f) \sin^2 (\pi \Delta f \tau) d\Delta f \]

- The formula is not closed-form.
- Flicker noise is nonstationary.

R.B. Staszewski (TCAS-I, 2005):

\[\sigma_{\Delta T, \frac{1}{f}} = \frac{\Delta f_{c,1}}{f_0} \cdot \sqrt{T_0} \cdot \sqrt{2 \mathcal{L}\{\Delta \omega_{c,1}\}}. \]

- Not rigorous
- Further correction to be made in modeling the -30dB/dec region
The flicker noise is ‘postulated’ as an stationary stochastic process by introducing a cut-off frequency.

Solving the integral analytically will establish a link.
We relate the variance of the period jitter with the phase noise for flicker noise as

\[
\sigma_{1/f}^2(t) = 2 \left[\ln \left(\frac{t}{T_0} \right) - 0.9151 \right] \frac{\Delta f^3}{f_0^4} L(\Delta f)
\]

This expression is CLOSED-FORM and COMPACT.

- \(t \): the observation time
- \(\Delta f \): the offset frequency
- \(L(\Delta f) \): the single-sided spectral noise density
- \(f_0 \): the nominal frequency
Time Domain Model of Oscillators Including the White and Flicker Noise

Model Schematic

Perturbed Frequency

Frequency to Phase

Phase to Clock

Clock_Edge_Analyzer

Noise_Source
The model with only flicker noise is used.

Jitter’s variance grows along \[\ln \left(\frac{t}{T_0} \right) - 0.9151 \].

It is predicted by our theory and formula.
The variance of the period jitter is fixed.

The phase noise is predicted by our formula by

\[L(\Delta f) = \frac{\sigma_{1/f}(T_0)}{2\left[\ln\left(\frac{f}{T_0}\right)-0.9151\right]} f_0^4 \Delta f^3. \]

The simulation results conforms the prediction.
Model Verification with Real Oscillator Circuits

- Parameter Extraction
 - 1.422GHz LC oscillator circuit with about 100KHz noise corner frequency
 - Thermal noise jitter: $\sigma_{thermal}^2 = L(\Delta f) \frac{\Delta f^2}{f_0^3}$
 - Flicker noise jitter: $\sigma_{1/f(t)}^2 = 2 \left[\ln \left(\frac{t}{T_0} \right) - 0.9151 \right] \frac{\Delta f^3}{f_0^4} L(\Delta f)$
Model Verification with Real Oscillator Circuits

Parameter Extraction (15.911GHz ring oscillator circuit with about 60MHz noise corner frequency)

- Thermal noise jitter: \(\sigma_{\text{thermal}}^2 = L(\Delta f) \frac{\Delta f^2}{f_0^3} \)

- Flicker noise jitter: \(\sigma_{1/f}(t) = 2 \left[\ln \left(\frac{t}{T_0} \right) - 0.9151 \right] \frac{\Delta f^3}{f_0^4} L(\Delta f) \)
Further Model Verification with Real Oscillator Circuits

- Extract the period jitter by transient noise analysis
 - Setup: noisemin is 10K, noisefmax is 500G
 - Runtime: 10 days 😞 to complete 1ms simulation (server with E5 processor and 16G memory)
Further Model Verification with Real Oscillator Circuits

- Comparison of the period jitter spectrum between
 - Our model (extracted by the link between the phase noise and the jitter)
 - That extracted directly in time domain by the transient noise analysis
Conclusions

- We have detailly discussed and derived the link between jitter and phase noise for the flicker noise.
 - A closed-form analytical expression is given without any approximation.
 - Demonstrate the link between period jitter and phase noise by simulation for the first time.

- Present a time domain behavioral model for oscillators considering the flicker noise.
 - The first work to model the up-converted flicker noise region of the phase noise accurately in time domain
 - Universal and accurate for either LC or ring oscillators

- Two different ways are used to verify the model, both observe excellent agreements.
Acknowledgements: This research is supported by NSFC (61471011) and R&D projects of Shenzhen city (JCYJ20150331102721193, JCYJ20160229094148396).