

Parasitic-Aware GP-Based Many-Objective Sizing Methodology for Analog and RF Integrated Circuits

Tuotian Liao and Lihong Zhang

Department of Electrical and Computer Engineering

Faculty of Engineering and Applied Science

Memorial University, St. John's, Canada

- Problem definition
- Previous works
- Our work:
 - Synthesis flow
 - Parasitic-awareness
 - The geometrical programming (GP)
 - The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

Problem definition

- Previous works
- Our work:
 - Synthesis flow
 - Parasitic-awareness
 - The geometrical programming (GP)
 - The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

Circuit Sizing Problem

Given: A circuit topology

Find: Device sizes and bias information that make the performance meet the specification.

- The biggest problem in the sizing task:
 - Performance not converge between pre- and post-layout (Due to layout effects)
 - Unexpected design cycles
 - Parasitic effects: primary and inevitable

Problem definition

Previous works

Our work:

- Synthesis flow
- Parasitic-awareness
- The geometrical programming (GP)
- The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

Recent Works on Automatic Sizing

Synthesis approaches categorization:[1]

How parasitics considered:

- Analytic modelling (our approach)
- Heuristic exploration
- From extraction and simulation tools

[1]T. Liao and L. Zhang, "Analog integrated circuit sizing and layout dependent effects: A review," *Microelectronics and Solid State Electronics*, 3(1A), pp. 17-29, 2014.

- Problem definition Previous works
- Our work:
 - Synthesis flow
 - Parasitic-awareness
 - The geometrical programming (GP)
 - The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

Synthesis Flow

Fig. 1. The GP-many-objective two-phase hybrid sizing flow

Problem definition Previous works

Our work:

- Synthesis flow
- Parasitic-awareness
- The geometrical programming (GP)
- The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

Parasitic-awareness

Interconnect parasitic models [2][3]

New models firstly being applied to GP platform

Device parasitics from foundry provided (PDK)

- GP phase (technology files)
- EA phase (model in netlist, called in simulation)

[2] G. Shomalnasab and L. Zhang, "New analytic model of coupling and substrate capacitance in nanometer technologies," *IEEE Trans. on Very Large Scale Integration* (*VLSI*) *Systems*, vol. 23, no. 7, pp. 1268-1280, 2015.

[3] L. Zhang, N. Jangkrajarng, S. Bhattacharya, and R. Shi, "Parasitic-aware optimization and retargeting of analog layouts: a symbolic template approach," *IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems*, vol. 27, no. 5, pp. 791-802, 2008.

Interconnect Parasitics

Interconnect length:

Int._length = f(w, l, nf, interconnect relationship)

Express parasitic R and C in symbolic way:

Para._R,C = g(Int._length, Int._width, parameters)

Merits:

- Models reusable in GP and EA
- Parasitic-awareness throughout the two phases

Problem definition Previous works

Our work:

- Synthesis flow
- Parasitic-awareness
- The geometrical programming (GP)
- The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

Geometrical Programming

 A GP is a type of mathematical optimization problem characterized by objective and constraint functions that have a special form (posynomial and monomial). It is a class of nonlinear optimization.

GP Pros & Cons

Pros:

Quickly determine a first-level optimum global solution

- Cons:
 - Requires in a convex form (GP-compatible)
 - Controversy of accuracy
- Contribution:
 - Two actions to address the cons

Action to the 1st Cons

Transfer non-posynomial to be GP compatible:

$$f_i(x) = \frac{ax^b + cx^d + \dots}{pq^r + lm^n + \dots}$$

$$\begin{array}{ll} ax^{b} + cx^{d} + \cdots \leq temp_{1}, & (\text{posynomial}) \\ pq^{r} + lm^{n} + \cdots \leq temp_{2}, & (\text{posynomial}) \\ temp_{1}/temp_{2} = f_{i}(x). & (\text{monomial}) \end{array}$$

Action to the 2nd Cons

- Idea of two-phase sizing process:
 - GP solution => Cadence verification => elite
 - Improve the elite: 2nd-phase optimizer with numerical simulation (fix the accuracy issue!)
- New problem:
 - Large EA search space + simulation => slow
- Solution:
 - Benefits of GP-elite:

Imply information => shrink variable ranges/trimmed space => decreases search configuration and time

In order to be efficient: GP and EA cannot be isolated!

Problem definition Previous works

Our work:

- Synthesis flow
- Parasitic-awareness
- The geometrical programming (GP)
- The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

A many-OEA: θ-DEA

- Multi-objective EA (MOEA):
 - Weak in handling problems with more than 3 objectives
- Analog circuit design:
 - > 3 objectives
- Many-OEA:
 - Good for >3 objectives
 - *θ*-DEA:
 - Structural strength of NSGA-III (H. Jain and K. Deb, 2014)
 - Aggregation function as the selection scheme from MOEA/D (Q, Zhang, 2007)
 - First practice in sizing domain

- Problem definition
- Previous works
- Our work:
 - Synthesis flow
 - Parasitic-awareness
 - The geometrical programming (GP)
 - The theta-dominance-based evolutionary algorithm
 (θ-DEA)
- Experimental results and conclusions

Experimental Circuits

Fig. 2. Circuit diagrams for a): two-stage OpAmp and b): Cascode common source LNA with source degeneration

Experiment Setups

Schemes:

One solution: best cost, performance One set: average cost, SR

Sch-0 and Sch-1 to 4: GP elite? large or small EA setting?

Cost function:

- minimize $\sum_{i=1}^{n} \alpha_i \cdot \frac{S_i}{P_i} + \sum_{j=n+1}^{m} \beta_j \cdot \frac{P_j}{S_j}$
- Performance vector → single cost as a representative

Experimental Results: Op-Amp

Table I. Settings and performance of the Two-Stage OpAmp

OpAmp	GP	Many-objective improved θ-DEA Methods							
0.18um: Schemes	0:	1: GP- Small	2: GP- Large	3: NoGP- Small	4: NoGP- Large				
Best cost	0.593	0.460	0.458	0.478	0.450				
Average cost	-	0.569	0.528	0.552	0.519				
Successful rate	-	21.88%	5.36%	25.00%	30.36%				
Run Time(hrs)	1.31s	2.25	8.25	2.25	8.25				
Specification	Performance								
Gain > 60dB	88.93 (0.675)	80.75 (0.743)	73.26 (0.819)	72.46 (0.828)	85.97 (0.698)				
UGF > 1M	1.50 (0.667)	5.52 (0.181)	20.83 (0.048)	4.32 (0.231)	4.06 (0.246)				
PM > 60°	80.13 (0.749)	87.59 (0.685)	91.32 (0.657)	131.35 (0.457)	124.41 (0.482)				
GM > 10dB	35.33 (0.283)	43.48 (0.230)	32.26 (0.310)	25.34 (0.395)	26.82 (0.373)				

Experimental Results: LNA

Table II. Settings and performance of the Low Noise Amplifier

LNA 90nm: Schemes	GP	Many-objective improved θ-DEA Methods						
	0:	1: GP-	2: GP-	3: NoGP-	4: NoGP-			
		Small	Large	Small	Large			
Best cost	0.866	0.709	0.753	0.766	0.766			
Average cost	-	0.765	0.782	0.766	0.766			
Successful rate	-	15.63%	8.93%	3.13%	1.79%			
Run Time(hrs)	1.76s	2.50	8.50	2.50	8.50			
Specification	Performance							
Gain > 15dB	20.32	19.34	19.16	16.47	21.00			
	(0.738)	(0.776)	(0.783)	(0.911)	(0.714)			
NF < 2.5dB	1.87	2.01	2.022	2.20	2.12			
	(0.748)	(0.804)	(0.809)	(0.878)	(0.847)			
S11 < -15dB	-15.16	-19.41	-23.67	-29.13	-22.17			
	(0.989)	(0.773)	(0.634)	(0.515)	(0.677)			
S22 < -15dB	-15.16	-30.94	-19.05	-19.79	-18.14			
	(0.989)	(0.485)	(0.787)	(0.758)	(0.827)			

Conclusion

Two-phase hybrid sizing flow

- Floorplan optimization
- Parasitic-awareness:
 - intrinsic parasitics
 - interconnect parasitics
- GP
- θ -DEA with numerical simulation
- Experimental analysis
 - Methodology efficacy: easy and hard problems

Thank You for Your Attention!

