High-Speed Stochastic Circuits Using Synchronous Analog Pulses

M. Hassan Najafi and David J. Lilja

Najaf011@umn.edu Lilja@umn.edu

ASP-DAC 2017, Tokyo, Japan

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Overview

Introduction

- Stochastic Computing, advantages, main weakness
- Representation of stochastic numbers

Stochastic Number Generation

- Conventional approach
- Proposed approach: PWM

Correlation in stochastic circuits

- Operations with correlated inputs, advantages, disadvantages
- Low cost sorting unit, stochastic comparator

Stochastic Operations with synchronous PWM signals

Experimental results

- Hardware cost, operation time, performance comparison
- Sources of computational error

Conclusions

Introduction

Stochastic Computation

- A re-emerging computing paradigm: introduced in 1969
- Logical computation on random bit streams

- Value: probability of obtaining a one versus a zero

- Unipolar [0, 1] positive
 - Each bit has probability X of being 1
- Bipolar [-1, 1] positive, negative

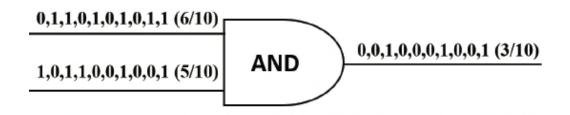
- Each bit has probability (X+1)/2 of being one

• 000111, 1010, 110010 = 0.5 (unipolar), 0.0 (bipolar)

Variable length bit streams

- Key Advantages
 - Simple hardware for complex operations
 - Multiplication: **AND** (unipolar), **XNOR** (Bipolar)
 - Scaled Addition: MUX
 - Gracefully tolerate noise
 - Redundant representation provides error tolerance
 - Stochastic: 0010000011000000 (3/16) -> 4/16=0.25
 - Binary: 0.0011=0.1875 -> 0.1011=0.68

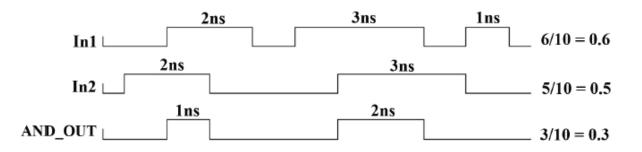
Skew tolerance


• Polysynchronous stochastic circuits [Najafi et al, ASP-DAC, 2016]

5/27

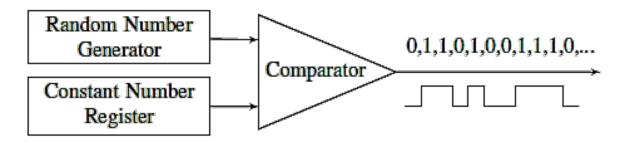
- Main Weakness
 - High accuracy ~ Long stochastic streams
 - Long computation time -> High energy consumption
 - Much slower
 - More energy consumption
 - than conventional binary design

Introduction


- Representation of Stochastic Numbers
 - Digital
 - Probability of obtaining a one versus a zero

– Analog

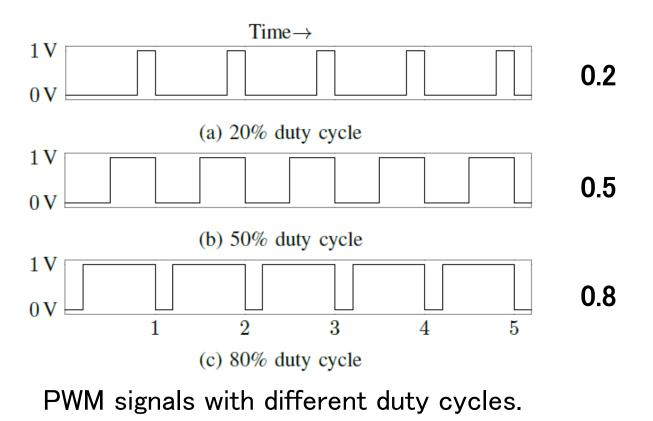
6/27


• Encoding the value as the fraction of time the signal is high

Stochastic Number Generation

Conventional approach

- Using random or pseudo-random constructs
 - e.g. LFSR

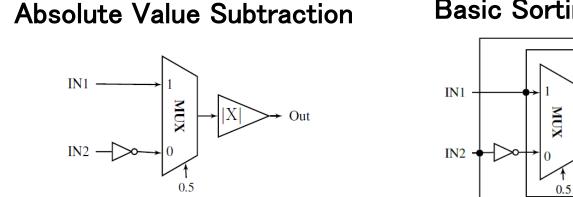

– Proposed approach

7 / 27

- Pulse Width Modulation
 - Analog periodic pulses signals as the stochastic number

Stochastic Number Generation

- PWM signals as the stochastic number
 - Defined by a **frequency** and a **duty cycle**.
 - Duty cycle describe the amount of high time


Correlation in Stochastic Circuits

- Stochastic Operations based on their inputs
 - Independent or uncorrelated. 110101, 101100
 - AND: Multiplication
 - Correlated. 111100, 110000
 - XOR. Absolute value subtraction |X1 X2| : 001100
 - AND. Minimum: 110000
 - OR. Maximum: 111100
 - Insensitive to correlation

9/27

• MUX. Scaled addition/subtraction

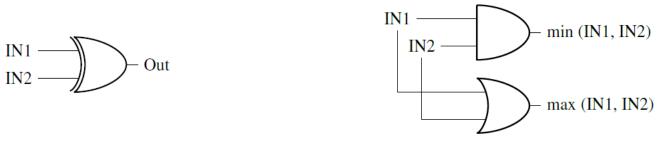
Correlation in Stochastic Circuits

Basic Sorting Unit (min, max)

tanh

0

MUX


MUX

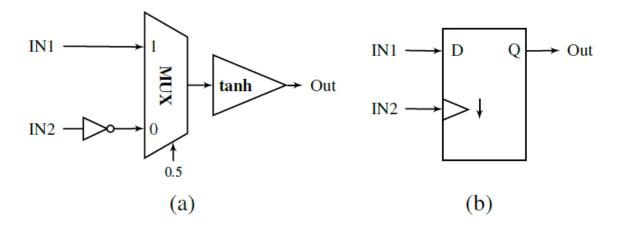
 $\min(IN1, IN2)$

max (IN1, IN2)

TVLSI' 16]
FSM-based operations (|X|, tanh) are expensive

(b) Only correlated Inputs [Alaghi and Hayes, ICCD' 13]

• Much cheaper when working only on correlated inputs


10/27

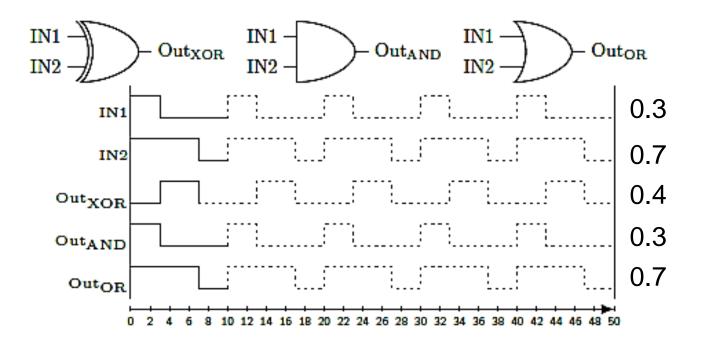
(a)

Correlation in Stochastic Circuits

11 / 27

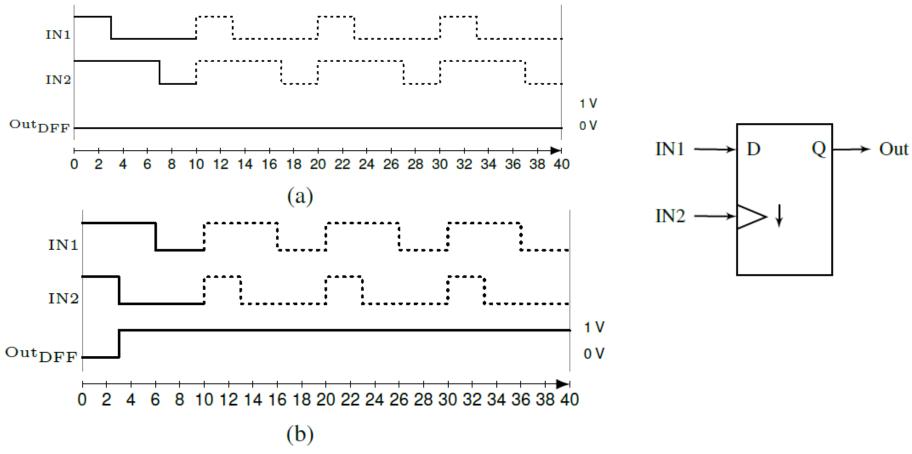
- Still no general method for synthesizing stochastic operations to work on correlated inputs
- We propose low cost stochastic comparator

(a) High-cost stochastic comparator [Li and Lilja, ICCD' 11] (b) Proposed low cost stochastic comparator


Stochastic operations with synchronous PWM signals

- We define correlation for analog representation of SN
- High correlation in PWM signals
 - 1) choosing the **same frequency** for the input signals
 - 2) having maximum overlap between the high parts
- Advantage:
 - Still have area saving benefit of correlated stochastic
 - Accurate output after running for only one period
 - Eliminating random fluctuation inaccuracy

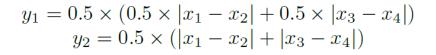
Disadvantage

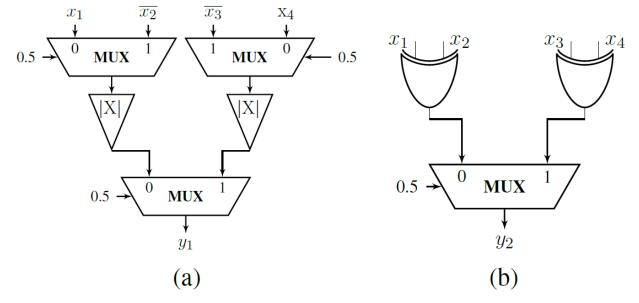

 Difficult to provide synchronization (correlation) in the second (or higher) levels of the circuit.

Stochastic operations with synchronous PWM signals

Examples of performing stochastic **absolute-valued subtraction**, **minimum**, and **maximum** operations on two **synchronized PWM signals**.

Stochastic operations with synchronous PWM signals

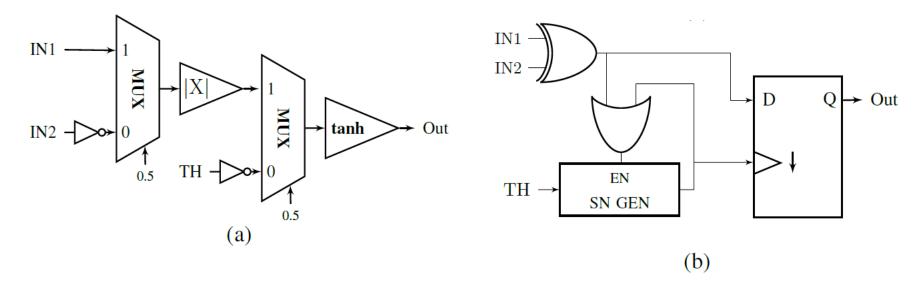



Examples of comparing SN, represented by correlated PWM signals, using the proposed stochastic comparator. IN1 < IN2 : Out=0, IN2 > IN1: Out:1

14/27

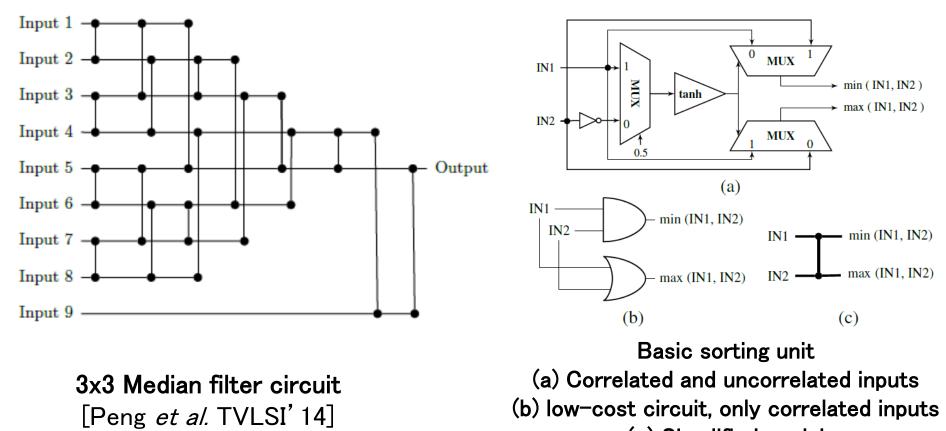
15/27

- Three image processing case studies
 - Robert's cross edge detection $y_1 = 0.5 \times (0.5 \times |x_1 x_2| + 0.5 \times |x_3 x_4|)$



(a) both correlated and uncorrelated inputs [Peng *et al.* TVLSI' 14];
(b) only correlated inputs [Alaghi *et al.* DAC' 13].

Circuit (a) is about 20 times more expensive than circuit (b)


16/27

- Three image processing case studies
 - Frame difference-based image segmentation

(a) both correlated and uncorrelated inputs [Peng et al. TVLSI' 14];
(b) Proposed low-cost implementation, only correlated inputs.

- Three image processing case studies
 - 3x3 Median filter noise reduction based on a sorting network

(c) Simplified model

17 / 27

Hardware cost comparison

Case Study	Independent	Correlated			
	Stochastic [9]	Stochastic			
Edge detection	110 NAND	2 NOT, 2 XOR, 1 MUX			
Noise reduction	125k NAND	15 AND, 15 OR			
Frame difference	107 NAND	1 XOR, 1 OR, 1 DFF			

• **Operation time** comparison: prior approach (256-bit)

- Synthesized with Synopsys Design Compiler, 45-nm library

	Indep	endent	Correlated			
Case Study	Stochastic		Stochastic			
	СР	Latency	СР	Latency		
Edge detection	0.39ns	99.8ns	0.30ns	76.8ns		
Noise reduction	0.58ns	148.4ns	0.39ns	99.8ns		
Frame difference	0.38ns	97.2ns	0.21ns	53.7ns		

High-Speed Stochastic Circuits using Synchronous Analog Pulses

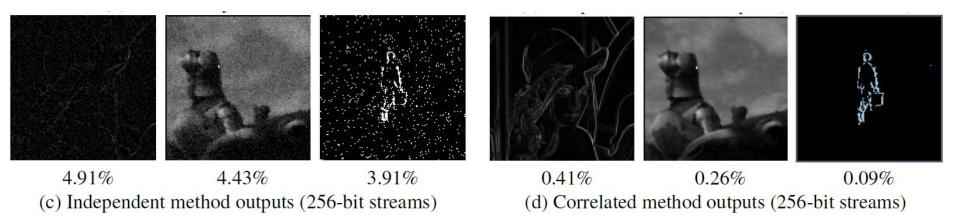
18 / 27

Performance evaluation

19/27

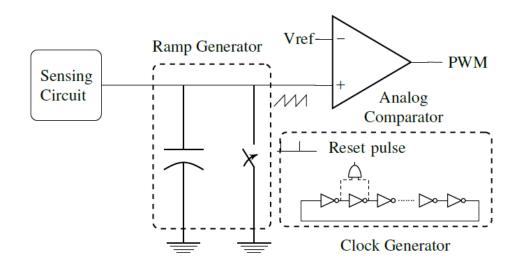
- Average error rate of processing sample images

(a) Original sample images



(b) Golden outputs with no errors

Performance evaluation


- Prior approach of stochastic number generation

	Design method	Average Error Rate for different operation time (# of clock cycles)							
		8	16	32	64	128	256	512	1024
Edge detection	Independent	27.5%	19.3%	13.1%	9.02%	6.52%	4.91%	3.70%	2.84%
	Correlated	3.57%	2.41%	1.50%	0.95%	0.62%	0.41%	0.29%	0.20%
Noise reduction	Independent	25.8%	17.3%	11.8%	8.33%	6.06%	4.43%	3.26%	2.42%
	Correlated	6.20%	3.08%	1.59%	0.82%	0.45%	0.26%	0.08%	0.04%
Frame difference	Independent	23.6%	42.0%	30.3%	14.6%	7.53%	3.91%	1.30%	0.48%
	Correlated	80.0%	1.09%	0.16%	0.16%	0.16%	0.09%	0.00%	0.00%

20 / 27

- Performance evaluation
 - PWM-based approach
 - SPICE-level simulation, 45-nm technology
 - PWM signals with periods: 0.3ns, 0.5ns, 1ns, and 2ns

Decreasing PWM period = Increases the error rate but Lowers implementation cost

 The area cost of the PWM generator (when period=2ns) is roughly as expensive as the cost of the conventional SNG with 8-bit LFSR.

- Performance evaluation
 - PWM-based approach
 - Only one period of the PWM signal is sufficient for determining an accurate output

	Period of PWM input signals					
	0.30ns	0.50ns	1ns	2ns		
Edge detection	1.56%	1.02%	0.70%	0.51%		
Noise reduction	1.33%	0.91%	0.65%	0.43%		
Frame difference	0.02%	0.00%	0.00%	0.00%		

PWM approach Much faster than prior approach

0.51% 0.43% 0.00% (e) PWM-based method outputs (period of 2ns)

22 / 27

Sources of Computational Errors

• Three primary sources of errors in performing stochastic operations on synchronized PWM signals

- E_G = Error in generating PWM signals

- Average error rate of the PWM generator used
 - $-0.3ns \rightarrow 0.23\%$ 0.5ns $\rightarrow 0.12\%$
 - -1ns -> 0.10% 2ns -> 0.09%

- E_s = Error due to skew between input signals

- Perfectly synchronized PWM signals are required
- On-chip variations, other noise sources affecting clock generators result in deviation from
 - expected period, phase shift, slew rate

Sources of Computational Errors

Three primary sources of errors in performing stochastic operations on synchronized PWM signals

- E_G = Error in measuring the output signals

- Simple analog integrator
 - Measuring the fraction of time the output signal is high
- Longer rise and fall times
- Imperfect measurement of the high and low voltages
 - Result in inaccuracies in measuring the correct output
- In our simulations

24 / 27

– Average error rate of measurements -> 0.10%

Conclusions

Reducing the hardware cost

- One of the main advantages of exploiting correlation

Two new low-cost stochastic circuits

- Sorting unit: 1 AND + 1 OR, Comparator: a D-type flip-flop

• Low cost implementation for

- Median filter noise reduction
- Frame difference-based image segmentation
- Introduced synchronous analog pulses as a new representation for correlated SNs
 - Still have area saving advantages of correlated circuits
 - Highly accurate results after only one period
 - A solution to long latency problem of SC

• We discussed

26 / 27

- PWM signals in correlated stochastic design
- "High-Speed Stochastic Circuits Using Synchronous Analog Pulses", M. Hassan Najafi and David J. Lilja, ASP-DAC 2017
- For PWM signals in independent stochastic design
 - *"Time-Encoded Values for Highly Efficient Stochastic Circuits", M. Hassan Najafi, Shiva Jamali-Zavareh, David J. Lilja, Marc Riedel, Kia Bazargan, and Ramesh Harjani, IEEE Transactions on VLSI 2017*

27 / 27

Questions?

M. Hassan Najafi Najaf011@umn.edu