

Non-Intrusive Dynamic Profiler for Multicore Embedded Systems

Sudarshan Sargur and Roman Lysecky

Electrical and Computer Engineering University of Arizona, Tucson, AZ sudarshansl@email.arizona.edu, rlysecky@ece.arizona.edu

The Past: Runtime-adaptive/Self-aware Systems

Needs accurate profile of application execution

Lysecky

The Past: Non-intrusive Profiling

- Dynamic Application Profiler (DAProf)
 - Provides loop/kernel-level profiling
 - Greater than 95% accuracy
 - Interfaced to microprocessor trace port
 - Nonintrusive
 - 5-10% area overhead

The Present: Runtime-adaptive/Self-aware Systems

Multicore and many core systems

- Thermal and power management
- Dynamic data-driven application systems
- Thermal/aging aware dynamic task allocation and scheduling
- Dependable systems
- Malware detection
- Energy optimization using heterogeneous/asymmetric processors
- Reconfigurable computing
- Runtime SOC tuning (i.e., tuning cache, memory, NOC, priority encoders, DAM, etc.)

Needs accurate profile of system execution

GPU

GPU

HW

IP

HW

IP

μP

HW

IP

μP

HW

IP

FPGA

The Present: Profiling Inaccuracy

Direct application of DAProf to individual processor cores can lead to inaccurate <u>system</u> profile

The Present: Profiling Inaccuracy

DAProf profiler in multicore systems

 3% peak error for single-tasked application executing on single processor core (ST-SC)

01/17/2017

 35% peak error for multi-tasked application executing on multicore processor (MT-MC)

6

Profile Task Filter

- Programmable component storing start and end address of each task (or region) to be profiled
- Monitors trace port bus to detect context switches
 - Asserts CS signal if iAddr falls outside of the current task's address range

Profile Cache

- *Tag*: Address of the short backwards branch
- *Offset*: Negative branch offset, corresponding to loop size
- *CurrIter*: Number of iterations for the current loop execution
- Avglter: Average Iterations per execution of the loop
 - 17-bit fixed point representation with 14 bits integer and 3 bits fractional

Profile Cache

- Execs: 16-entry storing the number of times a loop executes
- Maintains relative execution count
 - If Execs counter saturates, profiler controller adjusts all loop execution counts by dividing by 2 (implemented as right shift)
 - Applications may saturate at different times on different processor cores

Profile Cache

- *Execs*: 16-entry storing the number of times a loop executes
- Maintains relative execution count
 - If Execs counter saturates, profiler controller adjusts all loop execution counts by dividing by 2 (implemented as right shift)
 - Applications may saturate at different times on different processor cores

Local Profile		Local Profile		
(Cor	e 0) 🛛	(Core 1)		
Loop ID	Execs	Loop ID	Execs	
Α	42500	Х	34196	
В	22000	Υ	800	
С	34000	Ζ	10500	

Profile Results from Individual Cores

			Global	Profile						
	Loop	Execs	Execs	% ET	%ET	Error				
	ID	(Actual)	(DAProf)	(Actual)	(DAProf)	Error				
	A	42500	42500	17	29	12				
	В	22000	22000	9	15	6				
Γ	C	34000	34000	<u>1</u> 4	24	10				
	Х	132500	34196	53	24	29				
Ĺ	Y	1100	800	Ú	1	1				
	Z	17500	10500	7	7	0				

Naively Combined System Profile

Options for Improving Multicore Profiling using DAProf

- Larger DAProf entry for executions
 - Requires large area increase, and loops saturation are still not be synced across cores
- Global loops saturations
 - Requires increase in both execution entry and number of loops to maintain profile accuracy
 - Introduce timing and layout challenges

DAProf with multitask and multicore scaling (DAProf-MT-MC)

DAProf with multitask and multicore scaling (DAProf-MT-MC)

- Extend profile task filter with <u>per task</u> instruction counts
 - **pcValid**: Processor trace port indicating current PC is a valid instruction
 - Instruction Count: 64-bit register storing per task count of instructions executed
 - Instructions counts used to scale the estimated percentage of execution (%ET) across tasks

DAProf with multicore scaling (DAProf-MC)

- Extend profile task filter with <u>per core</u> instruction counts
 - Instructions counts used to scale the estimated percentage of execution (%ET) across tasks

Experimental Setup

- Multitasked benchmarks
 - Individual application tasks taken from the MiBench benchmark suite
 - Labeled MTx.y, where x indicates the number of tasks within the benchmark and y is a unique ID

Multicore benchmarks

- 10 multicore benchmarks
- Two multitasked application mapped onto separate processor core
- Evaluate the accuracy of DAProf,
 DAProf-MC, and DAProf-MT-MC

CJPEG				\checkmark	\checkmark		\checkmark
DJPEG						✓	
FFT							\checkmark
TIFF2BW						✓	
SUSAN	\checkmark			\checkmark	\checkmark		✓
DIJKSTRA	 ✓ 				✓		✓
BIT COUNT		\checkmark	\checkmark				
STRINGSEARCH		\checkmark	\checkmark			\checkmark	
QSORT				✓	\checkmark		✓
RAWCAUDIO						\checkmark	
RAWDAUDIO			\checkmark				
	MT2.3	<i>MT</i> 2.5	MT3.1	MT3.3	MT4.1	<i>MT</i> 4.2	MT5.1
MC1	 ✓ 	✓					
MC2	✓		✓				
MC3	✓					✓	
MC4		\checkmark		✓			
MC5		\checkmark					\checkmark
MC6			\checkmark		\checkmark		
MC7			\checkmark				\checkmark
MC8				✓		✓	
MC9					✓	\checkmark	
MC10						\checkmark	\checkmark

Experimental Results – Profiling Accuracy

DAProf-MT-MC's average error ranges from 0% to 0.7%

Experimental Results – Profiling Accuracy

DAProf-MT-MC's reduces peak error by as much as 33%

Lysecky

Experimental Results – Area Requirements

DAProf-MT-MC's requires 9.1% larger Profiler Task Filter

16

The Distant Future (The Year 2017)

- Investigate methods to support for task migration
- Integration with operating system
- Adaptive profiling resolution
- Investigate the impact on the dynamic optimization techniques
 - i.e., How much improvement can be achieved with increased profiling accuracy?
 - Particularly expect that worst case scenario can be better detected and mitigated

Thank You, Gracias, Danke, Merci, Tak, ありがとう, Kittos

