Design of A Pre-Scheduled Data Bus for Advanced Encryption Standard Encrypted System-on-Chips

Wujie Wen

Assistant Professor,

ECE Department, FIU,

January, 2017

IoT, The Next Big Thing!

Silicon Vendor Eye the IoT

• ARM:

The ARM IoT subsystem for **Cortex-A**, **-R**, **and -M** enables companies to simplify the process and improve time to market. (June, 2015)

• Intel:

The Intel® Quark[™] microcontroller brings low-cost connectivity, integration, and compatibility to the latest IoT applications. (Intel IoT Insights 2015)

• Samsung:

Samsung revealed a new chip family, Artik 1, Artik 5 and Artik 10, to power the IoT, putting it in more direct competition with Intel, Qualcomm and others in the quest to connect everything.

SAMSUNG

(May 2015)

• AMD:

Project SkyBridge, designed to fit the various requirements of IoT and embedded solutions, will feature the new family of APUs and SoCs with AMD's GCN core architecture. (The new AMD product roadmap in **2015**)

IoT Chip Demands

In the future, most new physical objects will be implanted chips and sensors!

Small Scale Low Power High Security

Challenges of IoT Chip Design

Challenges and Problems of IoT Chip Design:

-) AMBA AHB and AXI, Wishbone, OCP, CoreConnect, STBus
 - Define a large number of signals and complex structures
 - Transfer data in linear and row major order

• Limited resources for tiny chips – Overhead cost for complex security algorithms [Wong_TVLSI'12, Kermani_TC'12, Wang_TVLSI'10]

Contributions :

A Low-Cost and Low-Power Data Bus (DBUS) which provides three transfer modes: Block, State, and Linear

CBUS-DBUS Architecture

CBUS Protocol

CBUS: 69 wires, APB : 103 wires, AHB: 119 wires

Name	Source	Description
c_en	Micro-processor	CBUS request enable
c_wr	Micro-processor	CBUS transfer Direction
c_addr_wdata[31:0]	Micro-processor <	Shared signals: write address, read address, and write data
c_rdata[31:0]	CBUS slaves	CBUS read data
c_vld[1:0]	CBUS slaves	CBUS data valid

DBUS Protocol

DBUS Protocol

- ✓ CMD Preprocessing
- ✓ Full-duplex Bus
- ✓ Two-Cycle cmd/resp

Name	Source	Description
d_req_x	Masters	DBUS Request.
d_gnt_x	DMA	DBUS Grant
d_addr[31:0]		Address, Transfer Direction, and Transfer Mode/Size.
d_wrid_cmd_pkt	Masters	Id_len[11:10]: 2'b00 Linear, 2'b01 Block, 2'b10 State.
d_len[11:0]		2'b11 Reserved
d_wd_pkt[31:0]	Masters	DBUS Write Packet
d_wbm_pkt[3:0]	Masters	DBUS Write Data Bye Mask
d_rd_pkt[31:0]	DMA	DBUS Read Packet
d_rsp_pkt[1:0]	DMA	DBUS Write and Read Packet Valid.

DBUS Linear and Block Modes

AES Mathematical Preliminary

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) begin

```
byte state[4,Nb]
```

```
state = in
```

```
AddRoundKey(state, w[0, Nb-1])
```

for round = 1 step 1 to Nr-1

```
SubPytes (state)
```

```
ShiftRows(state)
```

Mixcolumno (State)

```
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
end for
```

```
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
```

```
out = state
```

end

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) begin byte state[4,Nb] state = in AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) for round = Nr 1 etcp -1 downto 1 InvShiftRows(state) InvSubJiec(state) AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]) InvMixColumns(state) end for InvShiftRows(state) InvSubBytes(state) AddRoundKey(state, w[0, Nb-1]) out = state

DBUS State Mode

Block Transfer Mode

AES State Transfer Mode

DBUS DUT (DMA and AES)

Performance Comparison

Performance Comparison (DDAM/XDAM)

Linear Tests:

- VB: 1.13 / DE: 79.31%
- SE: 1.27 / DEE: 1.29

Block Tests:

- VB: 1.19 / DE: 71.43%
- SE: 1.35 / DEE: 1.39

Cipher Tests:

- VB: 1.30 / DE: 66.93%
- SE: 1.48 / DEE: 1.49

VB: Valid Data Bandwidth, DE: Dynamic Energy, SE/DEE: Slice/Dynamic Energy Efficiency

Linear and Block Transfer Contributions:

X. Yang, J. Andrian, "A High Performance On-Chip Bus (MSBUS) Design and Verification," IEEE Trans. On VLSI Syst. (**TVLSI**), Vol. 23, Issue: 7, PP. 1350-1354, Jul. 2014.