Piracy Prevention of Digital Microfluidic Biochips

Ching-Wei Hsieh¹, Zipeng Li², and Tsung-Yi Ho¹ ¹*National Tsing Hua Univ.* ²*Duke Univ.*

Outline

- Background
- Developed PUFs
- Authentication Flow of DMFBs
- Security Analysis
- Experiment
- Conclusions

Biochips

• What is biochip?

Clinical diagnosis Environmental monitoring >DNA analysis

Conventional Diagnostic Analyzer

Higher throughput, smaller sample/reagent consumption, better portability

Digital Microfluidics

• Digital microfluidic biochip (DMFB)

>Droplets are addressed on an array of electrodes.

Droplets can be manipulated by applying potential to electrodes based on the principle of Electrowetting on Dielectric (EWOD).

The CAD Flow of DMFBs

Background

Security Vulnerability

Over production

Fabricate more unauthorized DMFBs and sell them illegally.

Counterfeiting

 \geq Recycle used DMFBs and sell them as new.

Piracy attack

Intellectual Property (IP) stealing.

IC vs DMFB

- Conventional approach uses secret keys to perform authentication.
- There is no memory and logic gate integrated on DMFB to store secret keys.

Physical Unclonable Function (PUF)

- PUF is used to generate secret keys for performing authentication.
- PUF exploits the random physical variations to generate device-specific challenge response pairs (CRPs).
 - Persistent and Unpredictable
 - Unclonable
 - Tamper Evident

Arbiter PUF

Delay paths with the same layout length

G. E. Suh and S. Devadas, "Physical unclonable functions for device authentication and secret key generation," in Proceedings of ACM/IEEE Design Automation Conference, pp. 9–14, 2007.

Background

Route PUF

• Utilizes the variation during the droplet transportation.

Experiment

Split PUF

• Utilizes the volume difference of droplets after being split.

Locking DMFBs by Additional FSM

- The control signals for DMFB are determined by the current state of the finite-state machine (FSM).
- Add redundant states to lock DMFBs.

Unlocking by PUF Response and License

Authentication Flow of DMFBs

Security analysis

• Brute force

Unlock the DMFB by guessing the correct license and PUF responses.

Simulating PUF

>Use machine learning techniques to attack.

Counterfeiting

≻recycle used DMFB and sell them.

Experiment of Proposed PUF

- The volume decreases due to the absorption at the electrode surface and evaporation.
- The error probability associated with each operation is called the intrinsic error limit.

•
$$E_{op}^{tran}$$
 is $\sqrt{I^2 + (E_{intr}^{tran})^2}$
• E_{op}^{slt} is $\sqrt{I^2 + 2(E_{intr}^{slt})^2}$

I : error limit at the start of the operation.

Experiment

Y. Zhao, T. Xu, and K. Chakrabarty, "Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-chip," ACM Journal on Emerging Technologies in Computing Systems, vol. 6, p. 11, 2010. 16

Experiment of Proposed PUF

 Difference of volume becomes obvious after more number of executed operations.

Duke microfluidics lab : *http://microfluidics.ee.duke.edu/*

Experiment

Conclusions

- We have presented the first authentication method to secure DMFBs from the piracy attack.
- We have proposed the novel PUF which utilizes the inherent variation of electrodes on DMFBs to generate secret keys for authentication.
- We have demonstrated the feasibility of our proposed PUF.

Thank You