





## Hamming-Distance-Based Valve-Switching Optimization for Control-Layer Multiplexing in Flow-Based Microfluidic Biochips

#### Qin Wang<sup>1</sup>, Shiliang Zuo<sup>1</sup>, Hailong Yao<sup>1</sup>, Tsung-Yi Ho<sup>2</sup>, Bing Li<sup>3</sup>, Ulf Schlichtmann<sup>3</sup>, and Yici Cai<sup>1</sup>

Tsinghua University
National Tsing Hua University
Technical University of Munich (TUM)

## Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

## **Flow-Based Microfluidic Biochips**

- One of the many different types of biochips
- Based on multilayer soft lithography technology
- Functional units are fabricated by elastomer material (polydimethylsiloxane, PDMS)

#### **Schematic of Flow-Based Biochips**

Flow-layer: components & flow channels Control-layer: control channels Microvalve: between control-layer and flow-layer



Qin Wang, Yizhong Ru, Hailong Yao, Tsung-Yi Ho, Yici Cai, "Sequence-pair-based placement and routing for flow-based microfluidic biochips" *Proc. of ASPDAC*, pp. 587-592, 2016.

## **Control-Layer Design**



H. Yao, Q. Wang, Y. Ru, and T.-Y. Ho, "Integrated Flow-Control Co-Design Methodology for Flow-Based Microfluidic Biochips" *IEEE Design & Test*, vol. 32, no. 6, pp. 60-68, 2015

## Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

#### **Multiplexer**



#### The huge number of microvalves



#### control layer complexity



Control microvalves in a software-programmable way

Introduce an additional layer on the top of control layer

L. M. Fidalgo, S. J. Maerkl, "A software-programmable microfluidic device for automated biology," *Lab on a Chip*, vol. 11, no. 9, pp. 1612-1619, 2011.

### Motivation of multiplexer

- Add an additional layer on the top of control layer
- Time division is the key point of the multiplexer
- Decrease the number of control pins





### Principle of multiplexer



*Time slice:* The time unit for control-valve switching in *Time slot:* The time unit for valve switching in control layer. A time slot includes many time slices.

## **Control-Valve switching of multiplexer**





#### Microvalves need to be switched



 $V_1 \qquad V_5 \qquad V_8$ 

**"000"** 

Switching order of microvalves

**"001"** 

"111"



## Switching order optimization problem





#### Motivation of our work

- The multiplexer needs to be switched when the states of microvalves are changed between every two adjacent time slots
- High switching frequency will make the multiplexer vulnerable and decrease the chip's reliability

# Decrease the switching frequency of multiplexer

#### **Given** The number of valves *n*

The actuation sequences of valves  $C^t = \{C_1^t, C_2^t, C_3^t, ..., C_n^t, \}$ The beginning time step  $T_{begin}$ The end time step  $T_{end}$   $(t \in [T_{begin}, T_{end}])$ 

**Find** Switching order  $S = \{M_{T_{begin}}, ..., M_{T_i}, M_{T_{i+1}}, ..., M_{T_{end}}\}$ of multiplexer from  $T_{begin}$  to  $T_{end}$ 

# **Objective** Minimize the cost of total switching times of the control-valves in the multiplexer

**Subject to** All of the different control signals  $iC^t$  from current time step t to next time step t + 1 must be switched

## Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

## Contributions

- We observe for the first time the switching order optimization problem
- The first switching order optimization method is proposed
- The total switching frequency of multiplexer is greatly reduced
- The proposed Hamming-distance-based method obtains the solution very close to the optimal lower bound

## Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

#### Overall design flow of our approach



### Hamming-distance

- Widely used in information theory and coding theory
- Definition: For two strings of equal length, it is the number of positions at which the corresponding symbols are different.
- It measures the minimum number of substitutions required to change one string into the other



#### Hamming-based valve switching optimization



## Optimal lower bound & Simple method

#### Optimal lower bound

- For valves in control layer, each change of states results in at least one switching time of control-valves in the multiplexer
- Thus, the optimal lower bound is the total number of changed states of valves from the beginning time step to the end time step.

#### Simple method

The decision of switching order is based on the order of valve's relative position



## Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

#### Our Method VS. Simple Method (b1-b10)



Average Improvement 48.6% Max Improvement 48.8%

b1-b10: The number of valves is 1024, and the total number of time slots is 100

#### Our Method VS. Simple Method (b11-b20)



Average Improvement 49.7% Max Improvement 50.2%

b11-b20: The number of valves is 2048, and the total number of time slots is 100

#### Our Method VS. Simple Method (b21-b30)



Average Improvement 49.6% Max Improvement 49.7%

b21-b30: The number of valves is 2048, and the total number of time slots is 200

#### Our Method VS. Simple Method (c1-c10)



Average Improvement 48.8% Max Improvement 49.1%

c1-c10: The number of valves is 1024, and the total number of time slots is 100

#### Our Method VS. Simple Method (c11-c20)



Average Improvement 49.8% Max Improvement 50%

c11-c20: The number of valves is 2048, and the total number of time slots is 100

#### Our Method VS. Simple Method (c21-c30)



Average Improvement 49.3% Max Improvement 50% c21-c30: The number of valves is 2048, and the total number of time slots is 200

#### Number of switching times of multiplexer (with "X" state)



#### Number of switching times of multiplexer (no "X" state)



## **Running time**

#### Comparison of running time between our method and simple method



## Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

## Summary

- By introducing the multiplexer, the number of off-chip control pins in flow-based microfluidic biochips can be reduced dramatically
- Time division is the key point of the multiplexer
- A switching order optimization method based on Hamming-Distance for control-valves in the multiplexer
- Experimental evaluations show that our method is effective and efficient

