

Hamming-Distance-Based Valve-Switching Optimization for Control-Layer Multiplexing in Flow-Based Microfluidic

Biochips

Qin Wang ${ }^{1}$, Shiliang Zuo¹, Hailong Yao ${ }^{1}$, Tsung-Yi Ho ${ }^{2}$, Bing Li³, Ulf Schlichtmann ${ }^{3}$, and Yici Cai ${ }^{1}$
$\begin{array}{ll}\text { 1. Tsinghua University } & \text { 2. National Tsing Hua University }\end{array}$
3. Technical University of Munich (TUM)

Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

Flow-Based Microfluidic Biochips

- One of the many different types of biochips
- Based on multilayer soft lithography technology
- Functional units are fabricated by elastomer material (polydimethylsiloxane, PDMS)

Schematic of Flow-Based Biochips

Flow-layer: components \& flow channels

Control-layer: control channels
Microvalve: between control-layer and flow-layer

(a) 3 D view.

(b) Top and side views.

Qin Wang, Yizhong Ru, Hailong Yao, Tsung-Yi Ho, Yici Cai, "Sequence-pair-based placement and routing for flow-based microfluidic biochips" Proc. of ASPDAC, pp. 587-592, 2016.

Control-Layer Design

H. Yao, Q. Wang, Y. Ru, and T.-Y. Ho, "Integrated Flow-Control Co-Design Methodology for Flow-Based Microfluidic Biochips" IEEE Design \& Test, vol. 32, no. 6, pp. 60-68, 2015

Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

Multiplexer

The huge number of microvalves
? Increase

control layer complexity

乞 Decrease

Control microvalves in a software-programmable way

Introduce an additional layer on the top of control layer
L. M. Fidalgo, S. J. Maerkl, "A software-programmable microfluidic device for automated biology," Lab on a Chip, vol. 11, no. 9, pp. 1612-1619, 2011.

Motivation of multiplexer

- Add an additional layer on the top of control layer
- Time division is the key point of the multiplexer
- Decrease the number of control pins

Principle of multiplexer

Time slice: The time unit for control-valve switching in Time slot: The time unit forltiglexer switching in control layer. A time slot includes many time slices.

Control-Valve switching of multiplexer

(a) Time slice t_{0}, V_{1} open, $\left(m_{1}, m_{2}, m_{3}\right)=" 000 "$

pressure
(c) Time slice $\boldsymbol{t}_{2}, V_{5}$ open, $\left(m_{1}, m_{2}, m_{3}\right)=" 001 "$

pressure
(b) Time slice t_{1}, V_{8} open, $\left(m_{1}, m_{2}, m_{3}\right)=" 111 "$
Microvalves need to be switched

$$
\begin{array}{lll}
V_{1} & V_{5} & V_{8}
\end{array}
$$

Switching order of microvalves

$$
\begin{array}{lll}
V_{1} & V_{5} & V_{8}
\end{array}
$$

Control-valve sequence of multiplexer "000" "001" "111"

Switching order optimization problem

Actuation Sequences of Valves Actuation Sequences of Multiplexer Switching Times of Multiplexer

Control-layer \longleftrightarrow Microvalve \quad Multiplexer
Switching order

Switching frequency

Motivation of our work

- The multiplexer needs to be switched when the states of microvalves are changed between every two adjacent time slots
- High switching frequency will make the multiplexer vulnerable and decrease the chip's reliability

Decrease the switching frequency of multiplexer

Increase the lifetime of multiplexer and chip

Problem Formulation

Given The number of valves n
The actuation sequences of valves $C^{t}=\left\{C_{1}^{t}, C_{2}^{t}, C_{3}^{t}, \ldots, C_{n}^{t},\right\}$
The beginning time step $T_{\text {begin }}$
The end time step $T_{\text {end }}$

$$
\left(t \in\left[T_{\text {begin }}, T_{\text {end }}\right]\right)
$$

Find \quad Switching order $S=\left\{M_{T_{\text {begin }}}, \ldots, M_{T_{i}}, M_{T_{i+1}}, \ldots M_{T_{\text {end }}}\right\}$ of multiplexer from $T_{\text {begin }}$ to $T_{\text {end }}$

Objective
Minimize the cost of total switching times of the control-valves in the multiplexer

Subject to
All of the different control signals i C^{t} from current time step t to next time step $t+1$ must be switched

Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

Contributions

- We observe for the first time the switching order optimization problem
- The first switching order optimization method is proposed
- The total switching frequency of multiplexer is greatly reduced
- The proposed Hamming-distance-based method obtains the solution very close to the optimal lower bound

Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

Overall design flow of our approach

Switching order of microvalves

Switching frequency of control-valves

Hamming-distance

- Widely used in information theory and coding theory
- Definition: For two strings of equal length, it is the number of positions at which the corresponding symbols are different.
- It measures the minimum number of substitutions required to change one string into the other

3-bit binary cube for finding Hamming distance	Two example distances: $100 \rightarrow 011$ has distance 3; $010 \rightarrow 111$ has distance 2
The minimum distance between any two vertices is the Hamming distance between the two binary strings.	

Hamming-based valve switching optimization

Optimal lower bound \& Simple method

- Optimal lower bound
- For valves in control layer, each change of states results in at least one switching time of control-valves in the multiplexer
- Thus, the optimal lower bound is the total number of changed states of valves from the beginning time step to the end time step.
- Simple method
- The decision of switching order is based on the order of valve's relative position

Switching order $V_{1} \Xi V_{3} \Rightarrow V_{5}$

Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

Our Method VS. Simple Method (b1-b10)

(1) Comparison among optimal lower bound, our method and simple method (including "X" state)

Average Improvement 48.6\% Max Improvement 48.8\%
b1-b10: The number of valves is 1024, and the total number of time slots is 100

Our Method VS. Simple Method (b11-b20)

(1) Comparison among optimal lower bound, our method and simple method (including " X " state)

Average Improvement 49.7\% Max Improvement 50.2\%
b11-b20: The number of valves is 2048, and the total number of time slots is 100

Our Method VS. Simple Method (b21-b30)

(1) Comparison among optimal lower bound, our method and simple method (including "X" state)

Average Improvement 49.6\% Max Improvement 49.7\%
b21-b30: The number of valves is 2048, and the total number of time slots is 200

Our Method VS. Simple Method (c1-c10)

(2) Comparison among optimal lower bound, our method and simple method (no "X" state)

Average Improvement 48.8\% Max Improvement 49.1\%
c1-c10: The number of valves is 1024, and the total number of time slots is 100

Our Method VS. Simple Method (c11-c20)

(2) Comparison among optimal lower bound, our method and simple method (no "X" state)

250000

Average Improvement 49.8\% Max Improvement 50\%
c11-c20: The number of valves is 2048, and the total number of time slots is 100

Our Method VS. Simple Method (c21-c30)

(2) Comparison among optimal lower bound, our method and simple method (no "X" state)

Average Improvement 49.3\% Max Improvement 50\% c21-c30: The number of valves is 2048, and the total number of time slots is 200

Number of switching times of multiplexer (with " X " state)

Number of switching times of multiplexer (no "X" state)

Running time

Comparison of running time between our method and simple method

Outline

- Background
- Problem Formulation
- Contributions
- Hamming-Distance-Based Valve-Switching
- Experimental Results
- Summary

Summary

- By introducing the multiplexer, the number of off-chip control pins in flow-based microfluidic biochips can be reduced dramatically
- Time division is the key point of the multiplexer
- A switching order optimization method based on Hamming-Distance for control-valves in the multiplexer
- Experimental evaluations show that our method is effective and efficient

