Improving LDPC Performance Via Asymmetric Sensing Level Placement on Flash Memory

Qiao Li §, Liang Shi §, Chun Jason Xue※
Qingfeng Zhuge §, and Edwin H.-M. Sha §

§ College of Computer Science, Chongqing University
※Department of Computer Science, City University of Hong Kong
Outline

- Background
- Problem and Challenge
- Design
- Experiments and Evaluations
- Conclusions
Flash Memory Deployment

- NAND flash memory is widely applied, from USB to data centers.
- NAND flash memory is developed in various aspects.
- Various flash products have been used around us.
Challenges of State-of-the-art Flash

- With the development, from SLC to 3D TLC, the reliability is degraded.
- Stronger ECC has been a requirement, from BCH to the LDPC.
LDPC Codes in Flash

- Low-Density Parity Code (LDPC) is applied in Flash for strong ECC capability
- The decoding strength of LDPC depends on the accuracy of input information

Flash read: Step1. Sensing Step2. Transfer

To decode data with high RBER, long read latency is needed.

Read performance is degraded using LDPC to guarantee reliability.
LDPC Codes in Flash

Low RBER → Less Sensing Levels → Low Read Latency

High RBER → More Sensing Levels → High Read Latency
Our Goal

- Reduce LDPC sensing levels
 - As well as the information bits
- While maintaining the same error correction capability for high RBER.
- Achieved by exploiting flash reliability characteristics.
Different types of error sources impact flash reliability.
Flash Reliability Characteristics

- **Inter-State Asymmetric Errors**
 - States S_2 and S_3 show the highest error rate.
 - States S_0 and S_1 show the lowest error rate.

- **Intra-State Asymmetric Errors**
 - The voltage states mainly shift to the left with long retention time.
 - The voltage states mainly shift to the right with great P/E cycles.
Basic Idea

- Place more sensing levels in the region with high RBER
- Place less sensing levels in the region with low RBER

![Graph showing log likelihood ratio (LLR) and sensed threshold voltage](image)

\[
LLR(y_i) = \log \left(\frac{P(x_i = 0 \mid y_i)}{P(x_i = 1 \mid y_i)} \right)
\]
Sensing Level Placement

- Inter-state Asymmetry aware.

Unaware

Aware

Hard-decision level

Soft-decision level

Sensing Level Placement

Unaware

Aware

Error-free region

Error region
Intra-state Asymmetry aware.

- Hard-decision level
- Soft-decision level

Left-shift unaware

Left-shift aware

Retention error

Right-shift unaware

Right-shift aware

Read/Program disturb
Implementation

- Inter-state Asymmetry aware.
 - The region between S_2 and S_3 takes the priority for sensing level adding.

![Diagram](image)

<table>
<thead>
<tr>
<th>Steps</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_0</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementation

- Intra-state Asymmetry aware.
 - Left-shift aware: left side takes priority for sensing level adding
 - Right-shift aware: right side takes priority for sensing level adding

<table>
<thead>
<tr>
<th>Steps</th>
<th>P/E Cycles > T_{PE}</th>
<th>P/E Cycles ≤ T_{PE}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>N^l_k</td>
<td>1</td>
<td>2 3</td>
</tr>
<tr>
<td>N^r_k</td>
<td>1 2</td>
<td>3</td>
</tr>
</tbody>
</table>
Experiments Setup

- **Sensing level**
 - Calculate number of sensing level bases on bit error rates [2].
 - Bit error rates are computed from the widely used flash memory error model [12].

- **Read performance**
 - Simulator: Disksim [15]
 - 8 channels, 8 chips per channel and 4 planes per chip
 - Default FTL, page mapping, garbage collection and wear leveling
 - 6 workloads from MSR [16]
Experiments Results

- Sensing level comparison between the proposed asymmetry aware and traditional asymmetry unaware.

<table>
<thead>
<tr>
<th>Symmetric</th>
<th>Left-shift aware (P/E = 5K)</th>
<th>Right-shift aware (Retention = 1 day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{total}</td>
<td>bits</td>
<td>level placement</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>(3,3)(3,3)(3,3)</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>(3,2)(3,2)(3,2)</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>(2,2)(2,2)(2,2)</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>(2,1)(2,1)(2,1)</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>(1,1)(1,1)(1,1)</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>(1,0)(1,0)(1,0)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>(0,0)(0,0)(0,0)</td>
</tr>
</tbody>
</table>

Traditional Symmetric | Inter- and Left Shift Aware | Inter- and Right Shift Aware

- Both sensing level and information bits reduction
- More reduction when there are more sensing levels.
Experiments Results

- Reduced read latency comparison

- The latency reduction increases with retention time.

- The reduction is degraded when retention time is 6 months, because only sensing level is reduced without information bits reduction.
Conclusions

- We studied the read performance reduction, which caused by adoption of LDPC for high RBER.
- We presented two reliability characteristics in flash memory.
- We proposed asymmetric sensing level placement approach based on the characteristics.
- Results show that the proposed approach achieves significant performance improvement with no overhead.
Questions!

Thanks!