Temperature-Aware Data Allocation Strategy for 3D Charge-Trap Flash Memory

Yi Wang¹, Mingxu Zhang¹, Jing Yang²

 ¹ Shenzhen University
² Harbin Institute of Technology yiwang@szu.edu.cn

Flash Memory Properties

- Faster access performance
- Lower power consumption
- Smaller size
- Lighter weight
- Shock resistance

2D (Planar) Flash Memory

Floating Gate (FG)

The number of electrons on the floating gate affects the threshold voltage of the cell.

SLC & MLC

 Both SLC and MLC use the threshold voltage to manipulate the state of the flash

Value	State		
0	Programmed		
1	Erased		

Value	State
00	Fully Programmed
01	Partially Programmed
10	Partially Erased
11	Fully Erased

2D Flash → 3D Flash

Process Improvement

2D Flash → 3D Flash

- Process Improvement
- SLC \rightarrow MLC \rightarrow TLC \rightarrow QLC

2D Flash → 3D Flash

■ Floating Gate (2D) \rightarrow Charge-Trap (3D)

3D Flash Memory

OSHIB	Α.	
25 3D Milim	av	
-	2	
acs.	SHIB	a /
	The states	TOSHIB.

BiCS

Technology

FG

TOSHIBA / Sandisk Intel / Micron

SAMSU	١G
V-NAN	C
18	

Layers	48	32	48
Release	2015	2015	2013
Consoity	128Gb (MLC)	256Gb (MLC)	128Gb (MLC)
Capacity	256Gb (TLC)	384Gb (TLC)	256Gb (TLC)

Thermal is a critical issue for 3D flash

- The variation of I_{BL} waveform is strongly activated by the temperature [1-2].
- High temperature introduces charge loss and worse retention behavior.

[1] M. K. Jeong, S. M. Joe, C. S. Seo, K. R. Han, E. Choi, S. K. Park, and J. H. Lee, "Analysis of random telegraph noise and low frequency noise properties in 3-D stacked nand flash memory with tube-type polysi channel structure," in 2012 Symposium on VLSI Technology (VLSIT), June 2012, pp. 55–56.

[2] M. Toledano-Luque, R. Degraeve, P. J. Roussel, V. S. Luong, B. H. Tang, J. G. Lisoni, C. L. Tan, A. Arreghini, G. V. den bosch, G. Groeseneken, and J. V. Houdt, "Statistical spectroscopy of switching traps in deeply scaled vertical poly-Si channel for 3D memories," in 2013 IEEE International Electron Devices Meeting (IEDM), Dec 2013, pp. 21.3.1–21.3.4.

TempLoad: A Temperature-Aware Data Allocation Strategy for 3D Flash Memory

- TempLoad allocates physical space based on the temperature status.
- TempLoad does not require prior knowledge of temperature.
- TempLoad does not need to maintain the temperature status of each physical block.
- Objective: reduce peak temperature and enhance data integrity

System Architecture of TempLoad

Reliability and Thermal Models

 We use lifetime reliability (LR) or instantaneous mean time to failure (MTTF) to model the impact on flash temperature [3].

$$LR \propto \{ [ln(\frac{a}{1+2e^{b/kT}}) - ln(\frac{a}{1+2e^{b/kT}} - c)] \times \frac{T}{e^{-d/kT}} \}^{\frac{1}{\delta}}$$

 The temperature differences can be modelled as [4-5]

$$C\frac{dT}{dt} = R^{-1}T(t) - pU(t)$$

[3] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, "Lifetime reliability: toward an architectural solution," *IEEE Micro*, vol. 25, no. 3, pp. 70–80, May 2005.

[4] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza, "3D-ICE: Fast compact transient thermal modeling for 3D ICs with inter-tier liquid cooling," in IEEE/ACM International Conference on Computer-Aided Design (ICCAD '10), 2010, pp. 463–470.

[5] A. Fourmigue, G. Beltrame, and G. Nicolescu, "Efficient transient thermal simulation of 3D ICs with liquid-cooling and through silicon vias," in *Design, Automation and Test in Europe Conference and Exhibition (DATE '14)*, 2014, pp. 1–6.

Block Selection with Temperature Mining

 Using this multiple-level quad tree, TempLoad only needs to compare the temperatures of a fixed number of sampling points at each stage.

Data Allocation with Set-Associative Block

- Solve the large-capacity block issue in 3D flash.
- Reduce the unnecessary garbage collection.

Evaluation

- TempLoad was implemented on the built-in NAND flash memory driver in Linux kernel 4.0.2.
- 3D-CBM [6] is selected as the baseline scheme.
- A 256Gb NAND flash memory is configured based on the specifications of a 3D flash memory test chip PF29F32B2ALCMG2 from Intel.

Trace	# of write operations	# of read operations	% of write	% of read
Financial	4,099,354	1,235,633	76.84	23.16
Webserver	1,260	4,260,449	0.03	99.97
onlineGames	653,133	817,887	44.40	55.60
KV-store	2,087,310	247,489	89.40	10.60

CHARACTERISTICS OF TRACES.

[6] Y. Wang, Z. Shao, H. Chan, L. Bathen, and N. Dutt, "A reliability enhanced address mapping strategy for three-dimensional (3-D) NAND flash memory," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 22, no. 11, pp. 2402–2410, Nov 2014.

Peak and Average Temperature

 The thermal image for standard benchmarks *Financial* (Figures (a) and (b)) and *onlineGames* (Figures (c) and (d)).

Peak and Average Temperature

Data Integrity

Response Time & Block Erase Counts

Response time

	3D-CBM (s)	TempLoad (s)
Financial	1.2469	0.9601
Webserver	1.0632	0.9620
onlineGames	2.5931	1.7078
KV-Store	3.3024	3.2281

Block erase counts

	3D-CBM	TempLoad
Financial	1,944,522	1,470,692
Webserver	1,096,940	955,315
onlineGames	1,174,240	787,942
KV-Store	2,284,932	2,172,934

Conclusion

- We present TempLoad, the first system-level temperature-aware data allocation strategy for 3D charge-trap flash memory.
- TempLoad allocates critical data to relatively low temperature physical blocks and improves the physical space utilization ratio.
- Experimental results show that TempLoad can significantly reduce the peak temperature and effectively enhance the data integrity

Thank you!