
Detecting Hardware Trojans in
Unspecified Functionality Through

Solving Satisfiability Problems

Nicole Fern1,2 Ismail San1,3 Kwang-Ting (Tim) Cheng1,2

1University of California Santa Barbara, USA

2Hong Kong University of Science and Technology, Hong Kong

3Anadolu University, Turkey

January 19, 2017

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 1 / 31

Outline

1 Introduction
Hardware Trojans
Unspecified Functionality

2 Securing Hardware Against Trojans in Unspecified Functionality
Overview
Formulating Trojan Detection as a Satisfiability Problem
Adder Coprocessor and UART Examples

3 Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 2 / 31

Hardware Trojans

Definition

Hardware Trojan: Malicious circuitry inserted in the hardware design
during any stage in the design lifecycle

Who can insert Trojans?

Rouge RTL designer, disgruntled employee

3rd party IP Provider

Synthesis, layout, other EDA tools

Fabrication facility

Chip packaging and product integration facility

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 3 / 31

Security Risks of Unspecified Functionality

What can Trojans modify?

Critical design functionality (ex. cause chip failure, induce faults,
gain root privileges, remove memory protections, etc.) [12]

Non-digital circuit characteristics (ex. amplify side-channel
leakage, cause advanced circuit aging, etc.) [12]

Focus of this work

Trojans modifying only unspecified functionality

Trojan affects signals in digital domain, but does not cause violation
of specified behavior

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 4 / 31

Example 1: RTL Don’t Cares

Don’t cares minimize circuit
area/timing/power overhead
during synthesis

Attacker can assign don’t cares
any value without violating the
design specification

module s i m p l e (. . .) ;
i n p u t c l k , r e s e t ;
i n p u t [1 : 0] c o n t r o l ;
i n p u t [3 : 0] data , key ;
output reg [3 : 0] out ;
reg [3 : 0] tmp ;
a lways @ (∗)

case (c o n t r o l)
2 ’ b00 : tmp <= data ;
2 ’ b01 : tmp <= data ˆ key ;
2 ’ b10 : tmp <= ˜ data ;
d e f a u l t : tmp <= 4 ’ bxxxx ;

endcase
a lways @ (posedge c l k)

i f (˜ r e s e t) out <= 4 ’ b0 ;
e l s e out <= tmp ;

endmodule

Nicole Fern, Shrikant Kulkarni, and Kwang-Ting Cheng. “Hardware Trojans Hidden in RTL
Don’t Cares - Automated Insertion and Prevention Methodologies”. In: ITC. 2015.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 5 / 31

Example 1: RTL Don’t Cares

Don’t cares minimize circuit
area/timing/power overhead
during synthesis

Attacker can assign don’t cares
any value without violating the
design specification

module s i m p l e (. . .) ;
i n p u t c l k , r e s e t ;
i n p u t [1 : 0] c o n t r o l ;
i n p u t [3 : 0] data , key ;
output reg [3 : 0] out ;
reg [3 : 0] tmp ;
a lways @ (∗)

case (c o n t r o l)
2 ’ b00 : tmp <= data ;
2 ’ b01 : tmp <= data ˆ key ;
2 ’ b10 : tmp <= ˜ data ;
2 ’ b11 : tmp <= key ;

endcase
a lways @ (posedge c l k)

i f (˜ r e s e t) out <= 4 ’ b0 ;
e l s e out <= tmp ;

endmodule

Nicole Fern, Shrikant Kulkarni, and Kwang-Ting Cheng. “Hardware Trojans Hidden in RTL
Don’t Cares - Automated Insertion and Prevention Methodologies”. In: ITC. 2015.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 6 / 31

Example 2: FIFO

write_enable

write_data

read_enable

read_data

FIFO
...

What is the correct value of read data when read enable is 0?

Does modification violate the specification? How can we detect it?

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 7 / 31

Example 2: FIFO

write_enable

write_data

read_enable

read_data

0

1

FIFO
...

secret_data

What is the correct value of read data when read enable is 0?

Does modification violate the specification? How can we detect it?

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 7 / 31

Why Is There Unspecified Functionality?

Answer: Design Complexity

Fully specifying design behavior often impossible

Only a subset of logic is involved in a particular task any given cycle

Complete specification (if even possible) incurs significant
implementation and verification overhead

Additional Examples:

Signals in floating point unit during a branch instruction

Bus data lines during idle cycles

Unused register fields and unmapped addresses

Internet networking protocols

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 8 / 31

Why Is There Unspecified Functionality?

Answer: Design Complexity

Fully specifying design behavior often impossible

Only a subset of logic is involved in a particular task any given cycle

Complete specification (if even possible) incurs significant
implementation and verification overhead

Additional Examples:

Signals in floating point unit during a branch instruction

Bus data lines during idle cycles

Unused register fields and unmapped addresses

Internet networking protocols

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 8 / 31

Verification and Trojan Detection Blind Spot

Verification Ignores Unspecified Functionality for Efficiency

It is estimated that over 70% of hardware development resources are
consumed by the verification task

Verification focuses on increasing confidence in the correctness of
specified functionality

Functional Trojan Detection Emphasizes Triggering Conditions

Trojans only modifying unspecified functionality do not need
triggering logic because no specifications are violated during activation

Avoids detection by methods which identify triggering logic [11, 14, 8]

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 9 / 31

1 Introduction
Hardware Trojans
Unspecified Functionality

2 Securing Hardware Against Trojans in Unspecified Functionality
Overview
Formulating Trojan Detection as a Satisfiability Problem
Adder Coprocessor and UART Examples

3 Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 10 / 31

Two Important Steps for Trojan Detection

Trojan Detection
Identify

Unspecified
Functionality

Design

1 Can be done manually or using semi-automated method1

2 Guarantee absence of Trojans without specifying unspecified behavior

1Nicole Fern and Kwang-Ting Cheng. “Detecting Hardware Trojans in Unspecified
Functionality Using Mutation Testing”. In: ICCAD. 2015.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 11 / 31

Detection Overview

Trojan Detection:
Under , does the value
of affect in a manner
visible to the attacker?

Identify
Unspecified

Functionality

(,) Pairs:
(read_data, read_en == 0)
(write_data, write_en == 0)

...

Design

x : is a signal in f

C: is a condition under
which x is unspecified

write_enable

write_data

read_enable

read_data

0

1

FIFO
...

secret_data

Main Module

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 12 / 31

1 Introduction
Hardware Trojans
Unspecified Functionality

2 Securing Hardware Against Trojans in Unspecified Functionality
Overview
Formulating Trojan Detection as a Satisfiability Problem
Adder Coprocessor and UART Examples

3 Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 13 / 31

Formulating Trojan Detection as a Satisfiability Problem

Goal: Identify if two different values of x during C can cause output
or state elements in the design to differ 1

If Equation 1 is satisfiable x is likely involved in Trojan circuitry

C ∧ (fx→x0 ⊕ fx→x1) (1)

FIFO Example

x = read data, C = ¬read enable

If ¬read enable ∧ (fread data→x0 ⊕ fread data→x1) satisfiable, FIFO data
propagates to outputs when FIFO is not being read from!

1f is a formula built from the design (can be boolean or contain operators such as +, <, etc.)

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 14 / 31

Determining Satisfiability when f is Boolean

f obtained from gate-level netlist (produced from RTL design using
synthesis tools)

Use boolean SAT solver or logic equivalence checking tools (ex.
Cadence Conformal LEC [2], Synopsys Formality [9], ABC [1],..)

Trojan Detection Using Equivalence Checking

Form miter for every (x , C) pair:

f
x

inputs outputs
Gate-Level Circuit

f
0

inputs

f
1

C
1 when x is unspecified

f0

f1
XOR

AND
z

If z is SAT, x involved
in Trojan circuitry

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 15 / 31

Determining Satisfiability Using SMT Solvers

1 Build SMT formula for each attacker-observable signal o by
constructing the signal data-flow graph using PyVerilog [10]

Example

output [1:0] led;
reg [1:0] x;
always @(posedge clk)
 if (x > 2)
 led <= 2’d3;
 else
 led <= x + 1;

led

PyVerilog
Graph

Traversal

Verilog Code

if-then-else

> +

x 12

3

Cond.
True

False

SMT Formula: led = ite(gt(x , 2), 3, plus(x , 1))

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 16 / 31

Determining Satisfiability Using SMT Solvers

2 For each (x , C) pair and o use PySMT [7] to determine satisfiability
of C ∧ (ox→x0 ⊕ ox→x1)

Example

Determine satisfiability of C ∧ (ledx→x0 ⊕ ledx→x1)

Use PySMT formula built from traversing the data-flow graph:

led = ite(gt(x , 2), 3, plus(x , 1))

SAT(and(C, xor(ite(gt(x0, 2), 3, plus(x0, 1))︸ ︷︷ ︸
led, where x→x0

, ite(gt(x1, 2), 3, plus(x1, 1))︸ ︷︷ ︸
led, where x→x1

)))

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 17 / 31

1 Introduction
Hardware Trojans
Unspecified Functionality

2 Securing Hardware Against Trojans in Unspecified Functionality
Overview
Formulating Trojan Detection as a Satisfiability Problem
Adder Coprocessor and UART Examples

3 Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 18 / 31

Trojans in Unspecified On-Chip Bus Functionality

Common bus protocols (ex. AMBA AXI, APB, Wishbone) only
partially specify signal behavior

T1 T2 T3
Unspecified!

ACLK

INFORMATION

VALID

READY

Figure: AXI Bus Protocol VALID/READY Handshake: Bus data can be anything
(including Trojan communications) when VALID is LOW!

Nicole Fern et al. “Hiding Hardware Trojan Communication Channels in Partially Specified SoC
Bus Functionality”. In: TCAD. 2016.

Nicole Fern et al. “Hardware Trojans in Incompletely Specified On-chip Bus Systems”. In:
DATE. 2016.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 19 / 31

Adder Coprocessor Trojan

AXI4-Lite bus interface allows R/W to 8-bit registers

Trojan Operation: 4-bits data leaked via on-chip bus to
coprocessor’s write data channel during idle bus cycles, then data
stored in unused register field (read out later by attacker)

read addr

write addr

write data

read data

write resp

AXI4-Lite Channels

AXI4-Lite
Interface

Adder
Coprocessor

Main
Processor

interrupt

AXI4-Lite Channels

Module w/
Secret Info

AXI4-Lite Channels

Unused
b_ap_valid register

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 20 / 31

Detecting Adder Coprocessor Trojan

Objective

Determine if bus signals can influence adder coprocessor output under
conditions where the bus is idle or control signals are unspecified.

(x, C) Pairs: Input bus
channel signals when channel
VALID signal is LOW

x C
AWADDR ¬AWVALID

WDATA ¬WVALID

WSTRB ¬WVALID

ARADDR ¬ARVALID

Outputs: AWREADY, WREADY,
BRESP, BVALID, ARREADY, RDATA,
RRESP, RVALID, interrupt

read addr

write addr

write data

read data

write resp

AXI4-Lite Channels

AXI4-Lite
Interface

Adder
Coprocessor

Main
Processor

interrupt

AXI4-Lite Channels

Module w/
Secret Info

AXI4-Lite Channels

Unused
b_ap_valid register

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 21 / 31

Detecting Adder Coprocessor Trojan

1 Build data flow graph for all design outputs
2 For every (x , C) pair and output o:

I Determine satisfiability of C ∧ (ox→x0 ⊕ ox→x1)
I If SAT, flag x as involved in Trojan circuitry and examine further

x C Outputs SAT
Trojan-free Trojan-infected

AWADDR ¬AWVALID None None

WDATA ¬WVALID None RDATA

WSTRB ¬WVALID None RDATA

ARADDR ¬ARVALID None None

Technique highlights the bus signals involved in the Trojan circuitry

No false positives when analyzing Trojan-free design

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 22 / 31

UART Example

Wishbone [13] bus interface to registers

Trojan Operation: Allows another slave to write to UART registers,
when in original design only bus master can control UART

x C Outputs SAT
Trojan-free Trojan-infected

wb adr i ¬wb stb i ∨
¬wb cyc i

None int o, baud o, dtr pad o,
stx pad o, rts pad o

wb dat i ¬wb stb i ∨
¬wb we i ∨
¬wb cyc i

None int o, baud o, dtr pad o,
stx pad o, rts pad o

wb sel i ¬wb stb i ∨
¬wb we i ∨
¬wb cyc i

None int o, baud o, dtr pad o,
wb ack o, stx pad o,
rts pad o

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 23 / 31

1 Introduction
Hardware Trojans
Unspecified Functionality

2 Securing Hardware Against Trojans in Unspecified Functionality
Overview
Formulating Trojan Detection as a Satisfiability Problem
Adder Coprocessor and UART Examples

3 Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 24 / 31

Conclusions and Future Challenges

Trojan Detection
Identify

Unspecified
Functionality

Design

An attacker can modify unspecified functionality to leak information
without detection by existing verification techniques

Detection methodology highlights Trojans in unspecified functionality
without overhead of defining and implementing “benign” behavior

Future Work: Identifying (x , C) pairs is still far from complete
(always new threat models to discover)

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 25 / 31

Conclusions and Future Challenges

Trojan Detection
Identify

Unspecified
Functionality

Design

An attacker can modify unspecified functionality to leak information
without detection by existing verification techniques

Detection methodology highlights Trojans in unspecified functionality
without overhead of defining and implementing “benign” behavior

Future Work: Identifying (x , C) pairs is still far from complete
(always new threat models to discover)

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 25 / 31

Conclusions and Future Challenges

Trojan Detection
Identify

Unspecified
Functionality

Design

An attacker can modify unspecified functionality to leak information
without detection by existing verification techniques

Detection methodology highlights Trojans in unspecified functionality
without overhead of defining and implementing “benign” behavior

Future Work: Identifying (x , C) pairs is still far from complete
(always new threat models to discover)

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 25 / 31

Questions?

Email: nicole@ece.ucsb.edu/eenicole@ust.hk

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 26 / 31

Bibliography I

[1] ABC. url: http://www.eecs.berkeley.edu/~alanmi/abc/.

[2] Cadence Conformal Equivalence Checker. url:
http://www.cadence.com/products/ld/equivalence_checker.

[3] Nicole Fern and Kwang-Ting Cheng. “Detecting Hardware Trojans in Unspecified
Functionality Using Mutation Testing”. In: ICCAD. 2015.

[4] Nicole Fern, Shrikant Kulkarni, and Kwang-Ting Cheng. “Hardware Trojans Hidden in
RTL Don’t Cares - Automated Insertion and Prevention Methodologies”. In: ITC. 2015.

[5] Nicole Fern et al. “Hardware Trojans in Incompletely Specified On-chip Bus Systems”.
In: DATE. 2016.

[6] Nicole Fern et al. “Hiding Hardware Trojan Communication Channels in Partially
Specified SoC Bus Functionality”. In: TCAD. 2016.

[7] Marco Gario and Andrea Micheli. “PySMT: a Solver-agnostic Library for Fast
Prototyping of SMT-Based Algorithms”. In: 2015.

[8] Matthew Hicks et al. “Overcoming an Untrusted Computing Base: Detecting and
Removing Malicious Hardware Automatically”. In: Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP’10. IEEE Computer Society, 2010, pp. 159–172.

[9] Synopsys Formality. url: http://www.synopsys.com/Tools/Verification/
FormalEquivalence/Pages/Formality.aspx.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 27 / 31

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.cadence.com/products/ld/equivalence_checker
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx

Bibliography II

[10] Shinya Takamaeda-Yamazaki. “Pyverilog: A Python-Based Hardware Design Processing
Toolkit for Verilog HDL”. In: Applied Reconfigurable Computing. 2015, pp. 451–460.
doi: 10.1007/978-3-319-16214-0_42.

[11] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. “FANCI: Identification of
Stealthy Malicious Logic Using Boolean Functional Analysis”. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, CCS’13.
Berlin, Germany: ACM, 2013, pp. 697–708.

[12] Edgar Weippl et al. Hardware Malware. Morgan & Claypool Publishers, 2013.

[13] Wishbone Bus. url: http://opencores.org/opencores,wishbone.

[14] Jie Zhang et al. “VeriTrust: Verification for Hardware Trust”. In: Proceedings of the 50th
Annual Design Automation Conference, DAC’13. Austin, Texas: ACM, 2013, 61:1–61:8.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 28 / 31

http://dx.doi.org/10.1007/978-3-319-16214-0_42
http://opencores.org/opencores,wishbone

Backup Slides

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 29 / 31

Scalability Issues

SMT-based: design size limited by the robustness of Verilog parser

Equivalence Checking: scalable and robust commercial tools exist

Design
LOC # 2NAND Time (sec.)

Orig. Trj. Orig. Trj. Orig. Trj.

Adder 614 616 839 877 0.61 0.69

UART 2269 2273 5829 5836 8.59 8.63

Table: Design Size and Total Analysis Time For All (x , C) Pairs

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 30 / 31

Modeling Sequential Behavior

Both methods detected Trojan in Adder Coprocessor, however
combinational equivalence checking failed to analyze UART design

UART design latches the bus signals

Pseudo-primary outputs trivially non-equivalent, but if only primary
outputs analyzed, Trojan goes undetected

Bounded sequential equivalence checking possible solution

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 31 / 31

	Introduction
	Hardware Trojans
	Unspecified Functionality

	Securing Hardware Against Trojans in Unspecified Functionality
	Overview
	Formulating Trojan Detection as a Satisfiability Problem
	Adder Coprocessor and UART Examples

	Conclusions and Future Challenges

