Detecting Hardware Trojans in
Unspecified Functionality Through
Solving Satisfiability Problems

2

Nicole Fern? Ismail San'3 Kwang-Ting (Tim) Cheng!?

1University of California Santa Barbara, USA
2Hong Kong University of Science and Technology, Hong Kong

3Anadolu University, Turkey

January 19, 2017

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 1/31

Outline

@ Introduction
@ Hardware Trojans
@ Unspecified Functionality

© Securing Hardware Against Trojans in Unspecified Functionality
@ Overview
@ Formulating Trojan Detection as a Satisfiability Problem
@ Adder Coprocessor and UART Examples

© Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 2 /31

Hardware Trojans

Definition
Hardware Trojan: Malicious circuitry inserted in the hardware design
during any stage in the design lifecycle

Who can insert Trojans?
@ Rouge RTL designer, disgruntled employee
@ 3rd party IP Provider
@ Synthesis, layout, other EDA tools
@ Fabrication facility

@ Chip packaging and product integration facility

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 3/31

Security Risks of Unspecified Functionality

What can Trojans modify?

o Critical design functionality (ex. cause chip failure, induce faults,
gain root privileges, remove memory protections, etc.) [12]

e Non-digital circuit characteristics (ex. amplify side-channel
leakage, cause advanced circuit aging, etc.) [12]

Focus of this work
@ Trojans modifying only unspecified functionality

@ Trojan affects signals in digital domain, but does not cause violation
of specified behavior

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 4 /31

Example 1: RTL Don't Cares

@ Don’t cares minimize circuit
area/timing/power overhead
during synthesis

@ Attacker can assign don't cares
any value without violating the
design specification

module simple (...);

input clk, reset;
input [1:0] control;
input [3:0] data, key;
output reg [3:0] out;
reg [3:0] tmp;
always Q@ (x)
case(control)
2'b00: tmp <= data;
2'b01: tmp <= data " key;
2'b10: tmp <= "data;
default: tmp <= 4’ bxxxx;
endcase
always @ (posedge clk)
if ("reset) out <= 4'b0;
else out <= tmp;

endmodule

Nicole Fern, Shrikant Kulkarni, and Kwang-Ting Cheng. “Hardware Trojans Hidden in RTL
Don't Cares - Automated Insertion and Prevention Methodologies”. In: /TC. 2015.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017

5/31

Example 1: RTL Don't Cares

@ Don’t cares minimize circuit
area/timing/power overhead
during synthesis

@ Attacker can assign don't cares
any value without violating the

design specification

module simple (...);

input clk, reset;

input [1:0] control;

input [3:0] data, key;

output reg [3:0] out;

reg [3:0] tmp;

always @ (x)
case(control)

2'b00: tmp <= data;

2'b01l: tmp <= data "~ key;

2'b10: tmp <= "data;

2'bll: tmp <= key;
endcase

always @ (posedge clk)
if ("reset) out <= 4'b0;
else out <= tmp;

endmodule

Nicole Fern, Shrikant Kulkarni, and Kwang-Ting Cheng. “Hardware Trojans Hidden in RTL
Don't Cares - Automated Insertion and Prevention Methodologies”. In: /TC. 2015.

Nicole Fern (UCSB/HKUST)

ASP-DAC 2017

January 19, 2017

6/31

Example 2: FIFO

write_enable read_enable
—> FIFO ¢
c . L
write_data read_data

@ What is the correct value of read_data when read_enable is 07

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 7/31

Example 2: FIFO

write_enable
—> FIFO

+>

read_enable

read_data

write_data

secret_data

@ What is the correct value of read_data when read_enable is 07

@ Does modification violate the specification? How can we detect it?

Nicole Fern (UCSB/HKUST) ASP-DAC 2017

January 19, 2017 7/31

Why Is There Unspecified Functionality?

Answer: Design Complexity
o Fully specifying design behavior often impossible
@ Only a subset of logic is involved in a particular task any given cycle

o Complete specification (if even possible) incurs significant
implementation and verification overhead

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 8 /31

Why Is There Unspecified Functionality?

Answer: Design Complexity
o Fully specifying design behavior often impossible
@ Only a subset of logic is involved in a particular task any given cycle

o Complete specification (if even possible) incurs significant
implementation and verification overhead

Additional Examples:
@ Signals in floating point unit during a branch instruction
@ Bus data lines during idle cycles
@ Unused register fields and unmapped addresses

@ Internet networking protocols

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 8 /31

Verification and Trojan Detection Blind Spot

Verification Ignores Unspecified Functionality for Efficiency

o It is estimated that over 70% of hardware development resources are
consumed by the verification task

@ Verification focuses on increasing confidence in the correctness of
specified functionality

Functional Trojan Detection Emphasizes Triggering Conditions

@ Trojans only modifying unspecified functionality do not need
triggering logic because no specifications are violated during activation

@ Avoids detection by methods which identify triggering logic [11, 14, §]

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 9 /31

© Securing Hardware Against Trojans in Unspecified Functionality
@ Overview
@ Formulating Trojan Detection as a Satisfiability Problem
@ Adder Coprocessor and UART Examples

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 10 / 31

Two Important Steps for Trojan Detection

Design f

Identify
Unspecified
Functionality

2]

Trojan Detection

@ Can be done manually or using semi-automated method?

@ Guarantee absence of Trojans without specifying unspecified behavior

INicole Fern and Kwang-Ting Cheng. "Detecting Hardware Trojans in Unspecified

Functionality Using Mutation Testing”.

Nicole Fern (UCSB/HKUST)

In: ICCAD. 2015.

ASP-DAC 2017 January 19, 2017 11 /31

Detection Overview

Design f
(@
Identify (x, C) Pairs:
Unspecified (read_data, read_en == 0)
Fun ctionality (write_data, write_en == 0)
a

@ x: is a signal in f

@ C: is a condition under
which x is unspecified

Nicole Fern (UCSB/HKUST

Trojan Detection:
Under C, does the value
of x affect fin a manner

visible to the attacker?

write_enable

Main Module

read_enable

S —

FIFO

1 read_data

write_data

secret_data

0

ASP-DAC 2017

January 19, 2017 12 /31

@ Introduction

© Securing Hardware Against Trojans in Unspecified Functionality

@ Formulating Trojan Detection as a Satisfiability Problem

© Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 13 /31

Formulating Trojan Detection as a Satisfiability Problem

@ Goal: Identify if two different values of x during C can cause output
or state elements in the design to differ *

o If Equation 1 is satisfiable x is likely involved in Trojan circuitry

C A (fX—)Xo EB f;(—)X;[) (1)

FIFO Example
@ x — read_data, C = —read_enable

o If —~read_enable N (fread.data—sxy P fread.data—sx,) satisfiable, FIFO data
propagates to outputs when FIFO is not being read from!

1f is a formula built from the design (can be boolean or contain operators such as +, <, etc.)

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 14 / 31

Determining Satisfiability when f is Boolean

o f obtained from gate-level netlist (produced from RTL design using
synthesis tools)

@ Use boolean SAT solver or logic equivalence checking tools (ex.
Cadence Conformal LEC [2], Synopsys Formality [9], ABC [1],..)

Trojan Detection Using Equivalence Checking

f If z is SAT, x involved

i . inputs f0 S
Form miter for every (x, C) pair: O— N

Gate-Level Circuit f f
) outputs

inputs @<
—— =1
/@ 1 when x is unspecified

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 15 / 31

Determining Satisfiability Using SMT Solvers

@ Build SMT formula for each attacker-observable signal o by
constructing the signal data-flow graph using PyVerilog [10]

Example

Verilog Code

output [1:0] led;
reg [1:0] x;

always @(posedge clk) |:|'>
if (x>2)

led <=2°d3;
else

led<=x+1; [F

Graph

PyVerilog Traversal

if-then-else

SMT Formula: led = ite(gt(x,2),3, plus(x,1))

v

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 16 / 31

Determining Satisfiability Using SMT Solvers

@ For each (x, C) pair and o use PySMT [7] to determine satisfiability
of C A (0x—sx0 D Ox—x)

Example

@ Determine satisfiability of C A (1edx—x, ® ledx—x)
@ Use PySMT formula built from traversing the data-flow graph:

led = ite(gt(x,2),3, plus(x, 1))

SAT(and(C, xor(ite(gt(xo,2), 3, plus(xo, 1)), ite(gt(x1, 2), 3, plus(xi, 1)))))

led, where x—xg led, where x—xq

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 17 / 31

@ Introduction

© Securing Hardware Against Trojans in Unspecified Functionality

@ Adder Coprocessor and UART Examples

© Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 18 / 31

Trojans in Unspecified On-Chip Bus Functionality

e Common bus protocols (ex. AMBA AXI, APB, Wishbone) only
partially specify signal behavior

T1 T2 T3
Unspecified!
ACLK | [| | |
INFORMATION | —~ X X
VALID /] \\
READY /] N\

Figure: AXI Bus Protocol VALID/READY Handshake: Bus data can be anything
(including Trojan communications) when VALID is LOW!

Nicole Fern et al. “Hiding Hardware Trojan Communication Channels in Partially Specified SoC
Bus Functionality”. In: TCAD. 2016.

Nicole Fern et al. “Hardware Trojans in Incompletely Specified On-chip Bus Systems”. In:
DATE. 2016.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 19 / 31

Adder Coprocessor Trojan

o AXI4-Lite bus interface allows R/W to 8-bit registers

e Trojan Operation: 4-bits data leaked via on-chip bus to
coprocessor’s write data channel during idle bus cycles, then data
stored in unused register field (read out later by attacker)

AXI4-Lite Channels

“readaddr) Adder)

I Module w/ ; Coprocessor
Secret Info AXI4-Lite Channels orite addr '\ P:

é—»m’)

i —fmma 11

Main “ AXI4-Lite rea b_ap_valid register
AXI4-Lite Channels I
“ nterface
Processor write res,

——

interrupt

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 20 /31

Detecting Adder Coprocessor Trojan

Objective

Determine if bus signals can influence adder coprocessor output under
conditions where the bus is idle or control signals are unspecified.

(x, C) Pairs: Input bus Outputs: AWREADY, WREADY,
channel signals when channel BRESP, BVALID, ARREADY, RDATA,
VALID signal is LOW RRESP, RVALID, interrupt
AXI4-Lite Channels
x C
AWADDR | ~AWVALID

WDATA | —-WVALID

WSTRB -WVALID o~ AXI4-Lite
ARADDR | —ARVALID nierfuce

interrupt

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 21 /31

Detecting Adder Coprocessor Trojan

© Build data flow graph for all design outputs
@ For every (x, C) pair and output o:
» Determine satisfiability of C A (0x—sx, ® Ox—sx,)

» If SAT, flag x as involved in Trojan circuitry and examine further

x c Outputs SAT
Trojan-free | Trojan-infected
AWADDR | —AWVALID | None None
WDATA | —-WVALID | None RDATA
WSTRB | —-WVALID | None RDATA
ARADDR | —ARVALID | None None

@ Technique highlights the bus signals involved in the Trojan circuitry

@ No false positives when analyzing Trojan-free design

Nicole Fern (UCSB/HKUST)

ASP-DAC 2017

January 19, 2017

22 /31

UART Example

@ Wishbone [13] bus interface to registers

Trojan Operation: Allows another slave to write to UART registers,
when in original design only bus master can control UART

Outputs SAT

X ¢ Trojan-free Trojan-infected

wb_adr_i | —wb_stb_i vV | None int_o, baud_o, dtr_pad_o,
—wb_cyc_i stx_pad_o, rts_pad_o

wb_dat_i | ~wb_stb_i V | None int_o, baud_o, dtr_pad_o,
—wb_we_i V stx_pad_o, rts_pad_o
—wb_cyc_i

wb_sel_i | —wb_stb_i V | None int_o, baud_o, dtr_pad_o,
—wb_we_i V wb_ack_o, stx_pad_o,
—wb_cyc_i rts_pad_o

Nicole Fern (UCSB/HKUST)

ASP-DAC 2017

January 19, 2017

23 /31

© Conclusions and Future Challenges

Nicole Fern (UCSB/HKUST) ASP-DAC 2017

Conclusions and Future Challenges

Design f

Identify o o

Unspecified Trojan Detection
Functionality

@ An attacker can modify unspecified functionality to leak information
without detection by existing verification techniques

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 25 /31

Conclusions and Future Challenges

Design f

Identify o o

Unspecified Trojan Detection
Functionality

@ An attacker can modify unspecified functionality to leak information
without detection by existing verification techniques

@ Detection methodology highlights Trojans in unspecified functionality
without overhead of defining and implementing “benign” behavior

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 25 /31

Conclusions and Future Challenges

Design f

Identify 9
Unspecified Trojan Detection
Functionality

@ An attacker can modify unspecified functionality to leak information
without detection by existing verification techniques

@ Detection methodology highlights Trojans in unspecified functionality
without overhead of defining and implementing “benign” behavior

e Future Work: ldentifying (x, C) pairs is still far from complete
(always new threat models to discover)

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 25 /31

Questions?

Email: nicole@ece.ucsb.edu/eenicole@ust.hk

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 26 / 31

Bibliography |

(1]
(2]

(3]
(4]
(5]
(6]
[7]

(8]

(9]

ABC. URL: http://www.eecs.berkeley.edu/~alanmi/abc/.

Cadence Conformal Equivalence Checker. URL:
http://www.cadence.com/products/ld/equivalence_checker.

Nicole Fern and Kwang-Ting Cheng. “Detecting Hardware Trojans in Unspecified
Functionality Using Mutation Testing”. In: /ICCAD. 2015.

Nicole Fern, Shrikant Kulkarni, and Kwang-Ting Cheng. “Hardware Trojans Hidden in
RTL Don’t Cares - Automated Insertion and Prevention Methodologies”. In: /TC. 2015.

Nicole Fern et al. “Hardware Trojans in Incompletely Specified On-chip Bus Systems”.
In: DATE. 2016.

Nicole Fern et al. "Hiding Hardware Trojan Communication Channels in Partially
Specified SoC Bus Functionality”. In: TCAD. 2016.

Marco Gario and Andrea Micheli. “PySMT: a Solver-agnostic Library for Fast
Prototyping of SMT-Based Algorithms”. [n: 2015.

Matthew Hicks et al. “Overcoming an Untrusted Computing Base: Detecting and
Removing Malicious Hardware Automatically”. In: Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP'10. IEEE Computer Society, 2010, pp. 159-172.

Synopsys Formality. URL: http://www.synopsys.com/Tools/Verification/
FormalEquivalence/Pages/Formality.aspx.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 27 /31

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.cadence.com/products/ld/equivalence_checker
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx

Bibliography Il

10]

(11]

(12]
(13]
(14]

Shinya Takamaeda-Yamazaki. “Pyverilog: A Python-Based Hardware Design Processing
Toolkit for Verilog HDL". In: Applied Reconfigurable Computing. 2015, pp. 451-460.
DOI: 10.1007/978-3-319-16214-0_42.

Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. “FANCI: Identification of
Stealthy Malicious Logic Using Boolean Functional Analysis”. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, CCS'13.
Berlin, Germany: ACM, 2013, pp. 697-708.

Edgar Weippl et al. Hardware Malware. Morgan & Claypool Publishers, 2013.
Wishbone Bus. URL: http://opencores.org/opencores, wishbone.

Jie Zhang et al. “VeriTrust: Verification for Hardware Trust”. In: Proceedings of the 50th
Annual Design Automation Conference, DAC’13. Austin, Texas: ACM, 2013, 61:1-61:8.

Nicole Fern (UCSB/HKUST) ASP-DAC 2017

http://dx.doi.org/10.1007/978-3-319-16214-0_42
http://opencores.org/opencores,wishbone

Backup Slides

Nicole Fern (UCSB/HKUST) ASP-DAC 2017

Scalability Issues

@ SMT-based: design size limited by the robustness of Verilog parser

@ Equivalence Checking: scalable and robust commercial tools exist

Design LOC # 2NAND | Time (sec.)

Orig. | Trj. | Orig. | Trj. | Orig. | Trj.
Adder | 614 | 616 | 839 | 877 | 0.61 | 0.69
UART | 2269 | 2273 | 5829 | 5836 | 8.59 | 8.63

Table: Design Size and Total Analysis Time For All (x, C) Pairs

Nicole Fern (UCSB/HKUST)

ASP-DAC 2017

January 19, 2017

30 / 31

Modeling Sequential Behavior

@ Both methods detected Trojan in Adder Coprocessor, however
combinational equivalence checking failed to analyze UART design

o UART design latches the bus signals

@ Pseudo-primary outputs trivially non-equivalent, but if only primary
outputs analyzed, Trojan goes undetected

@ Bounded sequential equivalence checking possible solution

Nicole Fern (UCSB/HKUST) ASP-DAC 2017 January 19, 2017 31/31

	Introduction
	Hardware Trojans
	Unspecified Functionality

	Securing Hardware Against Trojans in Unspecified Functionality
	Overview
	Formulating Trojan Detection as a Satisfiability Problem
	Adder Coprocessor and UART Examples

	Conclusions and Future Challenges

