

MUTARCH: Architectural Diversity for FPGA Device and IP Security

Robert Karam^{*1}, Tamzidul Hoque¹, Sandip Ray², Mark Tehranipoor¹, and Swarup Bhunia¹

*Email: robkaram@ufl.edu
 ¹ University of Florida, Gainesville, FL, USA
 ² NXP Semiconductor, Austin, TX, USA

Outline

• Introduction & Motivation

- Proliferation of FPGAs
- Challenges for Encryption in IoT
- Attacks on FPGA Bitstreams

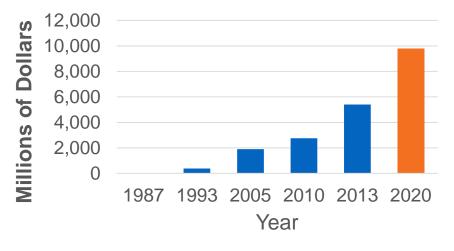
Proposed Solution

- MUTARCH: Mutable FPGA Architecture
- MUTARCH-enabled Obfuscation
- Design & Upgrade Flow

Results

- Experimental Validation
- Security Analysis / Performance Impact

Conclusion



Introduction

• FPGAs are increasingly used in numerous applications

- Automotive, Defense, Healthcare, Networking, Internet of Things
- Reduce time to market & development costs (compared to ASIC) while providing better energy-efficiency (compared to processor)
- ~\$9.8 billion market by 2020, >\$14 billion by 2024¹

FPGA Market Size

Why Intel will spend \$16.7 billion on Altera

AUGUST 27, 2015, 7:21 PM EST

- Research
- ¹ http://www.grandviewresearch.com/industry-analysis/fpga-market
 - ASP-DAC | Tokyo, Japan | January 19, 2016

Motivation: Encryption in IoT Domain

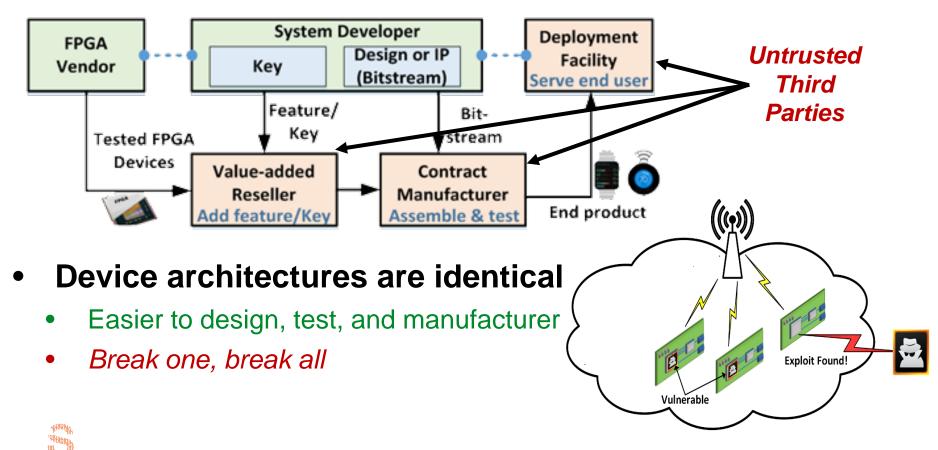
- Security is more challenging in IoT
 - Remote/in-field reconfiguration
 - Long in-field lifetimes (physical attacks)
- Encryption is strong, but not enough by itself for IoT
 - Key extraction through DPA

Resear

- eFUSE keys programmed at UTP facility
- Symmetric key not always suitable for remote upgrade
- PKC not ideal for constrained environment
 - Area/power intensive decryption blocks
 - May not be suitable for runtime reconfiguration applications

<u>Need a novel approach to improve security while that</u> <u>can maintain interoperability, minimally affecting</u> <u>design flow, and without incurring significant overhead</u>

Motivation: Attacks on Bitstreams

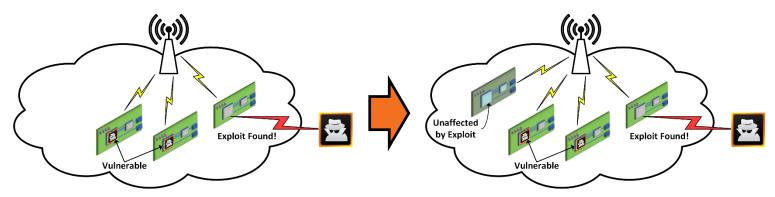


• FPGAs are vulnerable to various attacks

• Intellectual Property (IP) Piracy

Researc

• (Targeted) Malicious Modification

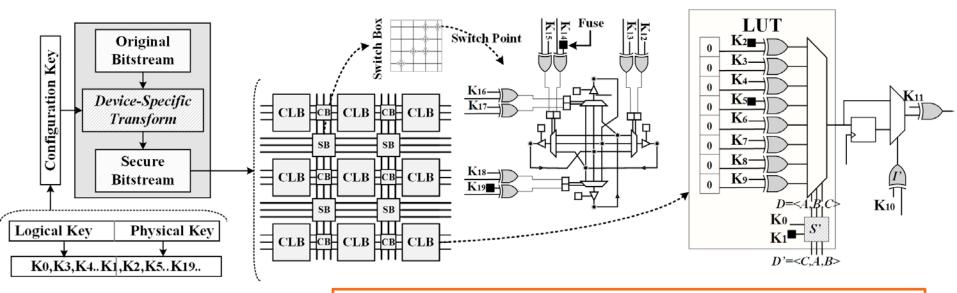

ASP-DAC | Tokyo, Japan | January 19, 2016

Proposed Solution: MUTARCH

- MUTARCH: Mutable Architecture for FPGA
 - Genetic diversity in nature helps ensure survival of species
 - Diverse FPGA architectures make all devices less vulnerable to attack

No longer "break one, break all"

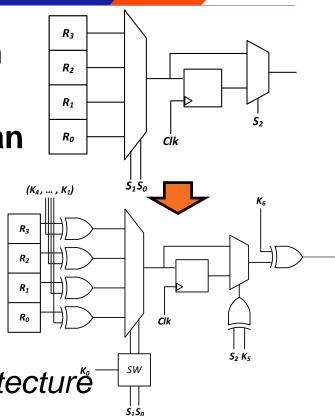
- Like software node-locking: One Bitstream, One Device
- Provides strong protection against <u>RE</u> & <u>TMM</u> for HW IP
- Can be used in conjunction with encryption, or standalone in ultra-lightweight applications


Resear

MUTARCH for FPGAs

- Static *physical* and time-varying *logical* architectures
 - Make every device physically different
 - Logically change architecture over time
- Architectural configuration based on a key
- Design for next-generation FPGAs, not existing ones¹

¹ Karam, et al. "Robust Bitstream Protection in FPGA-based systems through Low Overhead Obfuscation," ReConFig, 2016.


MUTARCH for FPGAs

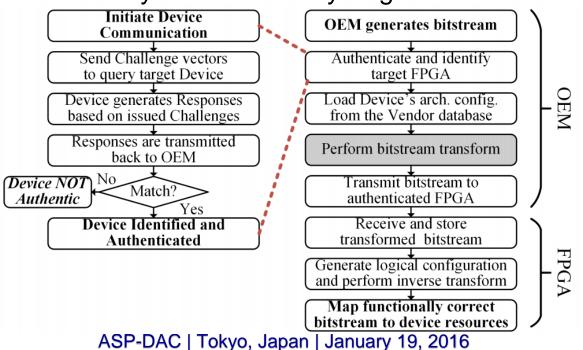
- Architectural modifications perform inverse obfuscation
- Key-based obfuscation networks can be extended
 - LUT Outputs

Resear

- Programmable Interconnects
- DSP Blocks, Multipliers, etc.
- Blockram/Embedded Memories
- Can modify any aspect of FPGA architectur[®]

Кеу Туре	Time Var	Storage	Area Ovhd	In-Field Upg.	Known Design	Destructive RE
Physical	No	Fuses	Low	Not Secure	Weak	Strong
Logical	Yes	Runtime	Moderate	Secure	Strong	Weak
Combined	Yes	Mixed	High	Secure	Strong	Strong

Secure In-field Upgrades

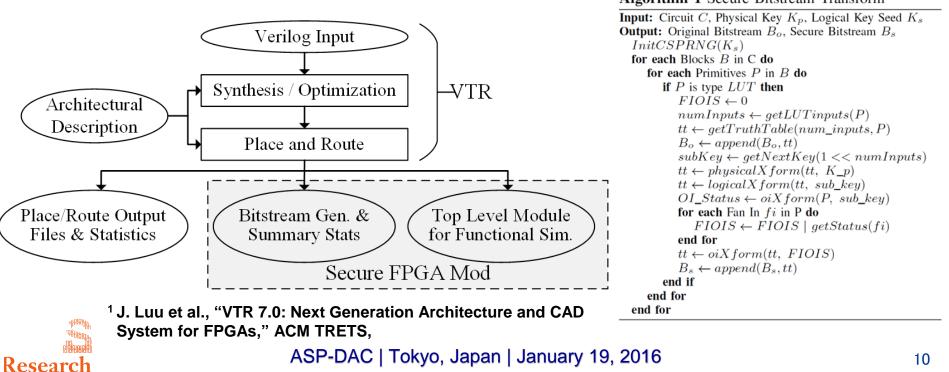


• Firmware upgrade is essential for long-life devices

- Optimize design and add new features
- Patch security vulnerabilities

• MUTARCH update requires device identification

- Bitstream obfuscated using key specific to target architecture
- Obfuscation natively inverted in only target device



Evaluation

- Prototype system based on VTR¹
 - Synthesis / Place & Route Verilog benchmarks
 - Compare original bitstream w/ bitstream for MUTARCH FPGA after Secure Bitstream Transform
 - Evaluate security (brute force, side channel, known design, reverse engineering)
 Algorithm 1 Secure Bitstream Transform

Results

Benchmark Name	# CLBs	Crit. Path Nodes	Bitstream Size (Bytes)	D_1	D ₂ (Original)	D_2 (Secured)	x Latency (sec.)
alu4	430	4	6878	8.00	1.68	8.00	1.14
apex2	520	13	8316	7.99	1.70	8.00	1.12
apex4	249	8	3974	8.05	1.32	8.00	1.14
des	973	12	15558	7.95	1.69	8.00	1.12
ex5p	159	4	2540	8.01	1.00	8.00	1.13
ex1010	387	9	6192	8.05	1.02	8.00	1.14
misex3	384	9	5554	8.01	1.61	8.00	1.14
pdc	996	6	15922	7.99	1.48	8.00	1.10
seq	506	8	8096	7.95	1.68	8.00	1.15
spla	894	12	14296	8.05	1.42	8.00	1.11

$$D_{1} = \frac{\sum_{i=0}^{N} HD(B_{O,i}, B_{S,j})}{N}$$

Inter-bitstream Hamming Distance

$$D_2 = \frac{\sum_{i=0}^{N} \sum_{j=i+1}^{N} HD(B_i, B_j)}{[N(N-1)]/2}$$

Intra-bitstream Hamming Distance

4-input LUT (16 content bits), HD = 8 = 50%

Security Analysis

• Brute Force

- Determining configuration key from test patterns via simulation
- Each trial requires significant computation
- Same procedure as brute forcing encryption

Known Design

- Mapping multiple known designs to better understand obfuscation
- Logical key changes resulting bitstream even in same design
- Provides moving target defense

Side Channel

- Analyze power/time/etc. side channels when mapping application
- Key generation at runtime may be susceptible
- No key used in physical network

Conclusion

- FPGA security using concept of diversity (esp. for IoT)
- Enables lightweight, secure remote reconfiguration
- Improves security for devices in field
 - IP Piracy
 - Targeted tampering attacks
- Requires minor changes to FPGA architecture
 - Toolflow (almost) the same
 - Upgrades using existing infrastructure
- Enables security/overhead tradeoff
- Can still be used with existing encryption techniques

Thank You!

