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Executive Summary

= Motivation
= Data analytics growing in importance
= They rely on machine learning (ML) algorithms
= Working on datasets that are sparse (texts, ratings)

= This work: accelerate sparse ML workloads

= Characterized ML workloads = low IPC, mem & branch
mispredict stalls, high $ miss rate

= Proposed HW accelerator - 4-13x speedups and 9-17x
better energy over CPU, with small area
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Machine Learning for Data Analytics
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Many Real World Datasets Are
Large, Sparse, and High-Dimensional

Examples from datasets we studied

E2006 1242 150K 16K 0.83% 485MB
RCV 74 42K 677K 0.15% 1.2GB
Webspam 86 255 245K 33.38% 268MB
Unigram
Webspam 3.7K 399K 245K 0.04% 17GB
Trigram
Gamevideo 221 1K 97K 22% 225MB
URL 117 2.6M 1.6M 0.003% 1.5GB
CriteoLabs 33 25.2M 32M 0.0001% 25GB
MovieLens TOK users, 10K movies 253MB
10M ratings
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Matrix Formats: CSR vs. CSC
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Example Matrix Operations

spMdV_csr:
Row-oriented sparse

matrix * dense vector
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spMspV_csc:
Column-oriented sparse

matrix * sparse vector
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spMdV_csc:

Scale matrix using scaling
factors in x, then update y
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Methodology

= System Under Study

s 2.7 GHz Intel Ivy Bridge Server (E5-2679 v2)
« 24 cores, 32KB I-cache, 32KB D-cache,
« 256 KB private L2 cache, 30 MB shared L3
« 128 GB DDR3 memory, 60 GB/s max mem bandwidth
= Dataset

= Real datasets, shown In earlier slide

= Tools
= Vtune and gprof for hotspot characterizations
= Sniper simulator to get cache statistics
= McPat for energy modeling
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Workloads and Identified Hotspots

Sparse PCA Dim. reduction SpVsSpV 99%
Kernelized SVM Classification SpMSpV 06%
classification

Linear SVM Classification SpMDV, SpVDV | 99%
classification

Logistic regression Classification SpMDV, SpVDV | 98%
Kernelized SVM Regression SpMSpV 04%
regression

Linear SVM Regression SpMDV, SpVDV | 99%
regression

SLIM Recom. engine SpMDV 88%
ALS Recom. engine SpMDV 92%
K-means Clustering SpvVDV 90%

Majority of time spent on sparse matrix/vector ops
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Application Characteristics
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System Architecture

Accelerator Tightly
Connected to CPU

L1 L1 ® Interfaceto L1 cache
L2 L2 Direct channel to
[z )
(2 (2 external memory
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LLC slice LLC slice

14



How to improve efficiency:
custom config for each matrix ops

Baseline spMspV, spMDV reduce(spM,DV)
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Accelerator Internal

Stream matrix Index Multiply and
. frommemory | comparisons accumulate ~Sum up FMA outputs
SpMSpV) (All patterns) ~ (SpMSpV, CSR
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MEM | | 1
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| 3 compare 3 FMAs |
‘ x Cache Ctrl | *

Cache subsystem

Support matrix operations used in ML workloads under study

(See details in the paper)
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Results

~20x speedup for SpMSpv
(K-SVM, sparse PCA)
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Related Work

= Sparse matrix & sparse ML accelerator
= Many proposals target only 1 sparse matrix format/op

= Our previous work on sparse ML accelerator did not
tightly integrate accelerator blocks with CPU

= Other ML accelerators
= Many proposals for individual workloads
= Many proposals for neural networks and/or dense data
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Summary

= Sparse ML growing in importance
= Sparsity from unstructured data (e.g., texts, ratings)

= We characterized various sparse ML workloads
= Most runtime spent on sparse matrix op hotspots

= We proposed HW accelerator for these matrix ops
= Tightly coupled with CPU and mem system
= Improve efficiency dramatically (performance, energy)
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