## Fine-Grained Accelerators for Sparse Machine Learning Workloads

#### ASP-DAC 2017

Asit K. Mishra, <u>Eriko Nurvitadhi</u>, Ganesh Venkatesh, Jonathan Pearce, Debbie Marr

> Accelerator Architecture Lab Intel Corp.

Disclaimer: The views expressed in this talk are those of the speaker and not his employer.

# **Executive Summary**

#### Motivation

- Data analytics growing in importance
- They rely on machine learning (ML) algorithms
- Working on datasets that are sparse (texts, ratings)
- This work: accelerate sparse ML workloads
  - Characterized ML workloads → low IPC, mem & branch mispredict stalls, high \$ miss rate
  - Proposed HW accelerator → 4-13x speedups and 9-17x better energy over CPU, with small area

- Executive summary
- Sparse Machine Learning
- Sparse matrix processing
- Characterization study
- Proposed hardware accelerator
- Related work + summary

# **Machine Learning for Data Analytics**



#### Data represented as Matrix

#### Misplaced top-level domain (TLD)



#### Many Real World Datasets Are Large, Sparse, and High-Dimensional

#### **Examples from datasets we studied**

|            | Avg.                 | <i>n</i> =Max. | <i>l</i> = # | %        | Size    |
|------------|----------------------|----------------|--------------|----------|---------|
| Name       | length               | length         | Samples      | Sparsity | on disk |
| E2006      | 1242                 | 150K           | 16K          | 0.83%    | 485MB   |
| RCV        | 74                   | 42K            | 677K         | 0.15%    | 1.2GB   |
| Webspam    | 86                   | 255            | 245K         | 33.38%   | 268MB   |
| Unigram    |                      |                |              |          |         |
| Webspam    | 3.7K                 | 399K           | 245K         | 0.04%    | 17GB    |
| Trigram    |                      |                |              |          |         |
| Gamevideo  | 221                  | 1K             | 97K          | 22%      | 225MB   |
| URL        | 117                  | 2.6M           | 1.6M         | 0.003%   | 1.5GB   |
| CriteoLabs | 33                   | 25.2M          | 32M          | 0.0001%  | 25GB    |
| MovieLens  | 70K users,10K movies |                |              |          | 253MB   |
|            | 10M ratings          |                |              |          |         |

- Executive summary
- Sparse Machine Learning
- Sparse matrix processing
- Characterization study
- Proposed hardware accelerator
- Related work + summary

## Matrix Formats: CSR vs. CSC







A matrix example

Compressed Sparse Row (CSR) Compressed Sparse Column (CSC)

*Rows = samples* 

Columns = features

Good for operation on samples

Good for operation on features

# **Example Matrix Operations**

spMdV\_csr:

**Row-oriented sparse** 

matrix \* dense vector





spMspV\_csc:

**Column-oriented sparse** 

matrix \* sparse vector





spMdV\_csc:

Scale matrix using scaling factors in x, then update y



Irregular reads on x

Irregular reads and writes on y Irregular reads and writes on y

- Executive summary
- Sparse Machine Learning
- Sparse matrix processing
- Characterization study
- Proposed hardware accelerator
- Related work + summary

# Methodology

System Under Study

- 2.7 GHz Intel Ivy Bridge Server (E5-2679 v2)
  - 24 cores, 32KB I-cache, 32KB D-cache,
  - 256 KB private L2 cache, 30 MB shared L3
  - 128 GB DDR3 memory, 60 GB/s max mem bandwidth
- Dataset
  - Real datasets, shown in earlier slide
- Tools
  - Vtune and gprof for hotspot characterizations
  - Sniper simulator to get cache statistics
  - McPat for energy modeling

# **Workloads and Identified Hotspots**

| Application         | Туре           | Hot code     | % Time |
|---------------------|----------------|--------------|--------|
| Sparse PCA          | Dim. reduction | SpVSpV       | 99%    |
| Kernelized SVM      | Classification | SpMSpV       | 96%    |
| classification      |                |              |        |
| Linear SVM          | Classification | SpMDV, SpVDV | 99%    |
| classification      |                |              |        |
| Logistic regression | Classification | SpMDV, SpVDV | 98%    |
| Kernelized SVM      | Regression     | SpMSpV       | 94%    |
| regression          |                |              |        |
| Linear SVM          | Regression     | SpMDV, SpVDV | 99%    |
| regression          |                |              |        |
| SLIM                | Recom. engine  | SpMDV        | 88%    |
| ALS                 | Recom. engine  | SpMDV        | 92%    |
| K-means             | Clustering     | SpVDV        | 90%    |

#### Majority of time spent on sparse matrix/vector ops

# **Application Characteristics**

100

High cache miss rate

High Branch Misprediction

Low IPC



L2 miss-rate

L3 miss-rate

- Executive summary
- Sparse Machine Learning
- Sparse matrix processing
- Characterization study
- Proposed hardware accelerator
- Related work + summary

# **System Architecture**



# How to improve efficiency: custom config for each matrix ops



### **Accelerator Internal**



Support matrix operations used in ML workloads under study (See details in the paper)



- Executive summary
- Sparse Machine Learning
- Sparse matrix processing
- Characterization study
- Proposed hardware accelerator
- Related work + summary

### **Related Work**

Sparse matrix & sparse ML accelerator

- Many proposals target only 1 sparse matrix format/op
- Our previous work on sparse ML accelerator did not tightly integrate accelerator blocks with CPU

#### Other ML accelerators

- Many proposals for individual workloads
- Many proposals for neural networks and/or dense data

# Summary

- Sparse ML growing in importance
  - Sparsity from unstructured data (e.g., texts, ratings)
- We characterized various sparse ML workloads
  Most runtime spent on sparse matrix op hotspots
- We proposed HW accelerator for these matrix ops
  - Tightly coupled with CPU and mem system
  - Improve efficiency dramatically (performance, energy)