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Executive Summary

 Motivation
 Data analytics growing in importance
 They rely on machine learning (ML) algorithms
 Working on datasets that are sparse (texts, ratings)

 This work: accelerate sparse ML workloads
 Characterized ML workloads  low IPC, mem & branch 

mispredict stalls, high $ miss rate
 Proposed HW accelerator  4-13x speedups and 9-17x 

better energy over CPU, with small area
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Many Real World Datasets Are 
Large, Sparse, and High-Dimensional

Examples from datasets we studied
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Matrix Formats: CSR vs. CSC
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Good for operation 
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Example Matrix Operations
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Irregular 
reads on x

Irregular reads and 
writes on y

spMdV_csc:

Scale matrix using scaling 
factors in x, then update y

spMdV_csr:

Row-oriented sparse

matrix  * dense vector

spMspV_csc:

Column-oriented sparse

matrix * sparse vector

Irregular reads and 
writes on y
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Methodology

 System Under Study
 2.7 GHz Intel Ivy Bridge Server (E5-2679 v2)  

 24 cores, 32KB I-cache, 32KB D-cache, 
 256 KB private L2 cache, 30 MB shared L3
 128 GB DDR3 memory, 60 GB/s max mem bandwidth

 Dataset
 Real datasets, shown in earlier slide

 Tools
 Vtune and gprof for hotspot characterizations
 Sniper simulator to get cache statistics
 McPat for energy modeling
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Workloads and Identified Hotspots
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Majority of time spent on sparse matrix/vector ops



Application Characteristics
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High cache 
miss rate

High Branch 
Misprediction

Low IPC
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System Architecture
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How to improve efficiency:
custom config for each matrix ops
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Accelerator Internal
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Support matrix operations used in ML workloads under study

(See details in the paper)



Results
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~20x speedup for SpMSpv
(K-SVM, sparse PCA)

Energy efficiency 
improvements

Due to parallel index matching &
custom datapath

SpMDV is bandwidth bound, 
perf limited by mem system

~12x avg better energy 
From turning off core and 

parts of mem subsystem
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Related Work

 Sparse matrix & sparse ML accelerator
 Many proposals target only 1 sparse matrix format/op
 Our previous work on sparse ML accelerator did not 

tightly integrate accelerator blocks with CPU

 Other ML accelerators
 Many proposals for individual workloads
 Many proposals for neural networks and/or dense data
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Summary

 Sparse ML growing in importance
 Sparsity from unstructured data (e.g., texts, ratings)

 We characterized various sparse ML workloads
 Most runtime spent on sparse matrix op hotspots

 We proposed HW accelerator for these matrix ops
 Tightly coupled with CPU and mem system
 Improve efficiency dramatically (performance, energy)
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