High Throughput Hardware Architecture for Accurate Semi-Global Matching

Yan Li, Chen Yang, Wei Zhong, Zhiwei Li, Song Chen* School of Information Science and Technology University of Science and Technology of China (USTC) January 19, 2017

Outline

• Introduction

- SGM Algorithm for Hardware Implementation
- Proposed Hardware Architecture
- Experimental Results
- Conclusion

Stereo Vision Systems

- Binocular vs. Monocular
 - Depth information by Triangulation
 - Vision distances
- Applications
 - Automobile, Robots, aerospace, etc.

Stereo Matching basics

- Two cameras: Left and Right
- Optical centers: O_L and O_R
- Virtual image plane: projection of actual image plane through optical center
- Baseline, B: the separation between the optical centers
- Scene Point: P
- Disparity, $d = p_L p_R = 6$

How to find the pixel p_L and its corresponding pixel p_R accurately and fast?

Stereo Matching – Challenges & Algorithms

- Challenges: Accuracy, Real time, and Low power
- Global matching algorithms:
 - High accuracy + Low throughput
 - DP, BP, Graph cuts
- Local matching algorithms:
 - Lower accuracy+ High throughput
 - SAD: foreground fattening
 - ADSW[Yoon, IEEE TPAMI 2006]: exponential operation, hardware unfriendly
 - GIF[Ttofis, DATE 2014]: poor disparity accuracies in the low-texture and occluded regions

Graph cuts

SAD

ADSW

GIF

Stereo Matching - Solution

- Semi-global Matching [Hirschmuller, IEEE TPAMI 2008]
 - High Accuracy:
 - Aggregate matching costs along paths(8/16)
 - Make trade-off between accuracy and hardware resources
- Customized Hardware Design
 - Real time processing & Low power consumption
 - Parallel processing
 - Full Pipeline
 - Hardware accelerators (FPGA, ASIC)

Hardware SGM – Previous works

Work	Path num.	Row paralleliz- ation	Weight path cost	External memory	Cost
Gehrig, IEEE ICVS 2009	8	No	No	Yes	ZSAD
Banz, IEEE SAMOS 2010	4	Yes	No	_	Rank Transform
Roszkowski, IEEE DDECS 2014	4	No	Yes	_	Census
Wang, IEEE TCSVT 2015	4	Yes	No	_	AD-census+ Cost Aggregation
Proposed 5		Yes	Yes	No	TAD

Contributions

- Hardware Architecture
 - Full pipeline
 - Two-row, path and disparity parallelization
 - High throughput: 197fps, 1280x960, 64 disparity levels
- Cost aggregation
 - Five aggregation paths
 - Adaptive weighted path cost aggregation
 - Laplace filter is used to enhance the edge of image
- Disparity refinement
 - Spike removal (SPF)

Outline

- Introduction
- SGM Algorithm for Hardware Implementation
 - Pre-processing
 - Initial matching cost volume construction
 - Semi-global cost aggregation
 - Disparity computation
 - Post-processing
- Proposed Hardware Architecture
- Experimental Results
- Conclusion

Stereo Matching

Pre-processing & Initial matching cost volume construction

Pre-processing

- Gaussian filter removes the noise
- Laplace filter enhances the edge
- Initial matching cost computation
 - The truncated absolute difference of intensity and Sobel gradient are used to compute the pixel-wise cost $Cost_{initial}(x, y, d)^d$

$$M(x, y, d) = |I_l(x, y) - I_r(x, y - d)|,$$

$$G(x, y, d) = \left(\left| \nabla_x \left(I_l(x, y) \right) - \nabla_x \left(I_r(x, y - d) \right) \right|$$

$$+|\nabla_y(l_l(x,y)) - \nabla_y(l_r(x,y-d))|)/2$$

 $Cost_{initial}(x, y, d) = \min(M(x, y, d), T_{gray})$

```
+\min(G(x, y, d), T_{grad})
```

(Gu	1	L	a		
	1	2	1		-1	-
	2	4	2		-1	
	1	2	1		-1	-

Laplac								
-1	-1	-1						
-1	9	-1						
-1	-1	-1						

ý)	K	Gy		
)	1	-1	-2	_]
)	2	0	0	0
)	1	1	2	1

Semi-global cost aggregation

• The $L_r(p, d)$ along a path r of the pixel p at disparity d is computed as follows[Hirschmuller, IEEE TPAMI 2008] : $L_r(p, d) = Cost_{initial}(p, d) + min \begin{pmatrix} L_r(p - r, d \pm 1) + P_1, \\ \min_k L_r(p - r, k) + P_2 \end{pmatrix} - \min_k L_r(p - r, k)$

Semi-global cost aggregation & Disparity computation

- The adaptive weight of path costs: 6×11 windows
 - $W_r(p) = \sum_{i=0,1,2,...,R} W_{ir}(p i \cdot r), i = D_{chebyshev}(p, p i \cdot r),$
 - $W_{ir}(p-i\cdot r) = \begin{cases} (R+1) |i| & |I(p) I(p-i\cdot r)| < Th \\ 0 & else \end{cases}$

- Disparity computation
 - The disparity of each pixel is computed by WTA approach. $D_p = argmin_{0 \le d \le d_{max}-1}S(p, d)$

Post-processing

- Detect the mismatching and occluded pixels by L-R check. $D_p \begin{cases} D_l & |D_l - D_r| \le 1 \\ 0 & else \end{cases}$
- Remove spikes by SPF • $W_p(x+i,y+j) = \begin{cases} 1 & if \frac{D_p(x,y) \times (256 - spf_r)}{256} \le D_p(x+i,y+j) \le \frac{D_p(x,y) \times (256 + spf_r)}{256} \end{cases}$ else • $N_p(x, y) = \sum_{-r \le i \le r, -r \le j \le r} W_p(x + i, y + j)$ D_r D_l • $D_p(x,y) = \begin{cases} D_p(x,y) & if N_p(x,y) \ge Th \\ 0 & else \end{cases}$ LR-check Fill the disparity of invalid pixel SPF –valid valid-→ min ∢

Outline

- Introduction
- SGM Algorithm for Hardware Implementation
- Proposed Hardware Architecture
 - Overview
 - Pre-processing module
 - Initial matching cost volume construction
 - Semi-global cost aggregation architecture
 - Post-processing
- Experimental Results
- Conclusion

Overview – Hardware Architecture

• Hardware Architecture

- Fully pipeline
- Disparity, path, and row parallelization
- Throughput: 960p/197fps
- *F_{max}*:156MHz
- Disparity range: 64/16
- Flexible Resolution

Pre-processing module – Gaussian and Laplace filter

- Two line FIFOs capture pixels from four adjacent rows.
- CONV performs convolution of 3x3 windows consisting of a set of registers with the filter kernels

Initial matching cost volume construction

- Disparity parallel: 64
- Scanline buffer: FIFO
- GCU: Sobel gradient computation
 ICCU: 64x2, initial matching cost
- Window buffer: 3x3 register computation

18

Overview - Semi-global cost aggregation architecture

- Horizontal group: lr and rl.
- Vertical group: ltb, tb and rtb. The path cost computation depends on the path costs in the upper row.

Semi-global cost aggregation architecture – Path cost computation

Semi-global cost aggregation architecture – Horizontal path cost computation

Semi-global cost aggregation architecture – Horizontal path cost computation

- Horizontal Architecture
 - Compute three pixels from three different rows in three clock cycles

Post-processing: L-R check, SPF, Subpixel interpolation and Median filter

• Occlusion and mismatching detection: ①

Outline

- Introduction
- SGM Algorithm for Hardware Implementation
- Proposed Hardware Architecture
- Experimental Results
 - Quality of results
 - Hardware performance and consumption
- Conclusion

Experimental results – Quality

- Test bench: Middlebury
- Test images: Tsukuba,
 Venus, Teddy and
 Cones
- Average error rate:
 6.03%
 - Lower accuracy in Venus test image with large plain area

Experimental results – Quality

- The influence of the path number and adaptive weighted path costs are given in the following table.
- Using one more path and adaptive weighted path cost aggregation improve the accuracy by 3.69%

Varianta	Average error								
Vallants	nonocc	Average error all disc 6.19 9.32 6.80 13.32 7.03 12.31 8.01 16.78	Overall						
5path+weight	2.58	6.19	9.32	6.03					
5path	3.19	6.80	13.32	7.77					
4path+weight	3.37	7.03	12.31	7.57					
4path	4.38	8.01	16.78	9.72					

Experimental results – Hardware performance and consumption

• Quartus II, Altera Stratix V

	nonocc			Average error rate					Spood		platfor		
Work	Tsukub a	Venus	Teddy	Cones	nonocc	all	disc	overall	Image size	D^1	(fps ²)	(10 ⁶)	m
Wang[11]	2.39	0.38	6.08	2.12	2.74	6	8.10	5.61	1600×1200	128	42.61	10472	FPGA
Proposed	2.79	0.68	4.18	2.67	2.58	6.19	9.32	6.03	1280×960	64	197	15492	FPGA
Ttofis[6]	4.04	1.55	7.52	2.77	3.97	6.80	9.30	6.69	1280×720	64	60	3538	FPGA
Hirschmuller[8]	3.26	1.00	6.02	3.06	3.34	6.87	12.3	7.50	-	-	-	-	CPU
Banz[9]	4.1	2.7	11.4	8.4	6.7	-	-	-	640×480	128	103	4050	FPGA
Gehrig [13]	5.86	3.85	13.28	9.54	8.13	1	-	-	340×200	64	27	118	FPGA
Shan[14]	-	-	-	-	-	17.3	-	-	1280×1024	256	46	15437	FPGA

¹D: Disparity ² fps: frame per second ³ MDE/s: Million Disparity Estimation per second ($M \times N \times D \times fps$)

- Throughput: 1280x960/197fps at 64 disparity levels, MDE=15492M, $f_{max} = 156MHz$
- Hardware resource utilization: logic utilization 96,084/234,720 (41%), total registers 83,156/469,440 (18%), block memory bits 20,329,470/52,428,800 (39%)
- Power: 16.603W

Outline

- Introduction
- SGM Algorithm for Hardware Implementation
- Proposed Hardware Architecture
- Experimental Results
- Conclusion

Conclusion

- This work proposed a high-throughput hardware architecture for accurate semi-global matching using two-row parallelization and disparity parallelization.
- Five path costs are adaptively weighted to improve the disparity accuracy by 3.69%.
- The implementation on FPGA shows a throughput of 1280×960/197fps at 64 disparity levels in 156MHz.
- The results show high quality.

Thank you very much! Any questions?