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DECIDING ORIENTATION 
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CPU Or iented  UG 

According to Linux standard, when the utilization of GPU is 

lower than 80%, it is CPU oriented. 
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EXPERIMENT 
Platform :  Google NEXUS 7 
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EXPERIMENT 
Test Items : 3 Games 

ASPHALT  8 

Car racing game  
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Puzzling and 
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Breakout-style 

games 
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EXPERIMENT 
Environment : Testing Methodology 

Device Monitor 

D e v i c e  

Game playing 

Play by HiroMacro.   

HiroMacro : 

https://play.google.com/store/apps/details?id=com.prohiro.macro&hl=zh_TW. 

M o n i t o r  

Record power 

Running governor   
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EXPERIMENT 
Results : Break Bricks 
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[3] 

[3] Pathania, Anuj, et al. "Power-performance modelling of mobile 

gaming workloads on heterogeneous MPSoCs." Proceedings of 

the 52nd Annual Design Automation Conference. ACM, 2015. 
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EXPERIMENT 
Results : ASPHALT 8 
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EXPERIMENT 
Results : Brain Dots 
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CONCLUSION 

Power saving governor with quality of user experience 

GPU & CPU frequencies scaling for mobile games  

Adaptive online frequency governor  
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THANK YOU 

Q & A 


